多客户端单服务器环境下预测预取优化

Naveed Ahmad, Azam Khan, Faiza Bibi
{"title":"多客户端单服务器环境下预测预取优化","authors":"Naveed Ahmad, Azam Khan, Faiza Bibi","doi":"10.1109/FIT.2011.36","DOIUrl":null,"url":null,"abstract":"Web caching and web prefetching are major areas of research. Both techniques are used for locating resources local to the user. The prefetching techniques make use of probability and statics for the availability of web document local to the user. This research focused on invention of model technique that provides resources local for the users. This method's results are compared for optimizes resources in web prefetching. The mechanism proposed for the prefetching document will extract the resources and make an easy access of resources for users.","PeriodicalId":101923,"journal":{"name":"2011 Frontiers of Information Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Predictive Prefetching in Multi-client Single-Server Environment\",\"authors\":\"Naveed Ahmad, Azam Khan, Faiza Bibi\",\"doi\":\"10.1109/FIT.2011.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web caching and web prefetching are major areas of research. Both techniques are used for locating resources local to the user. The prefetching techniques make use of probability and statics for the availability of web document local to the user. This research focused on invention of model technique that provides resources local for the users. This method's results are compared for optimizes resources in web prefetching. The mechanism proposed for the prefetching document will extract the resources and make an easy access of resources for users.\",\"PeriodicalId\":101923,\"journal\":{\"name\":\"2011 Frontiers of Information Technology\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Frontiers of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FIT.2011.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2011.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Web缓存和Web预取是主要的研究领域。这两种技术都用于定位用户本地的资源。预取技术利用概率和静态来确定用户本地web文档的可用性。本研究的重点是为用户提供本地资源的模型技术的发明。比较了该方法对web预取资源的优化效果。本文提出的预取文档机制可以提取资源,方便用户访问资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Predictive Prefetching in Multi-client Single-Server Environment
Web caching and web prefetching are major areas of research. Both techniques are used for locating resources local to the user. The prefetching techniques make use of probability and statics for the availability of web document local to the user. This research focused on invention of model technique that provides resources local for the users. This method's results are compared for optimizes resources in web prefetching. The mechanism proposed for the prefetching document will extract the resources and make an easy access of resources for users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信