高速公路视频监控盲区事件预测方法

Liyao Ma, Xiao Wang, Ding Li, M. Gao
{"title":"高速公路视频监控盲区事件预测方法","authors":"Liyao Ma, Xiao Wang, Ding Li, M. Gao","doi":"10.1109/IAEAC.2017.8054041","DOIUrl":null,"url":null,"abstract":"Based on the actual traffic detection data of the upstream and downstream video monitor blind area, Support Vector Machines (SVM) algorithm was used to realize the short-term traffic flow forecasting, and VISSIM simulation technology was used build the traffic blind area prediction model. The video blind spot detection algorithm with practical engineering application value and the traffic incident monitoring solution under non-full-range video monitoring condition are put forward.","PeriodicalId":432109,"journal":{"name":"2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event prediction method of expressway in video monitoring-blind area\",\"authors\":\"Liyao Ma, Xiao Wang, Ding Li, M. Gao\",\"doi\":\"10.1109/IAEAC.2017.8054041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the actual traffic detection data of the upstream and downstream video monitor blind area, Support Vector Machines (SVM) algorithm was used to realize the short-term traffic flow forecasting, and VISSIM simulation technology was used build the traffic blind area prediction model. The video blind spot detection algorithm with practical engineering application value and the traffic incident monitoring solution under non-full-range video monitoring condition are put forward.\",\"PeriodicalId\":432109,\"journal\":{\"name\":\"2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC.2017.8054041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2017.8054041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于上下游视频监控盲区的实际交通检测数据,采用支持向量机(SVM)算法实现短期交通流预测,并采用VISSIM仿真技术构建交通盲区预测模型。提出了具有实际工程应用价值的视频盲点检测算法和非全范围视频监控条件下的交通事故监控解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event prediction method of expressway in video monitoring-blind area
Based on the actual traffic detection data of the upstream and downstream video monitor blind area, Support Vector Machines (SVM) algorithm was used to realize the short-term traffic flow forecasting, and VISSIM simulation technology was used build the traffic blind area prediction model. The video blind spot detection algorithm with practical engineering application value and the traffic incident monitoring solution under non-full-range video monitoring condition are put forward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信