基于相关性的预测:机器学习的透明和自适应替代方案

M. Czasonis, M. Kritzman, D. Turkington
{"title":"基于相关性的预测:机器学习的透明和自适应替代方案","authors":"M. Czasonis, M. Kritzman, D. Turkington","doi":"10.3905/jfds.2022.1.110","DOIUrl":null,"url":null,"abstract":"The authors describe a new prediction system based on relevance, which gives a mathematically precise measure of the importance of an observation to forming a prediction, as well as fit, which measures a specific prediction’s reliability. They show how their relevance-based approach to prediction identifies the optimal combination of observations and predictive variables for any given prediction task, thereby presenting a unified alternative to both kernel regression and lasso regression, which they call CKT regression. They argue that their new prediction system addresses complexities that are beyond the capacity of linear regression analysis but in a way that is more transparent, more flexible, and less arbitrary than widely used machine learning algorithms.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relevance-Based Prediction: A Transparent and Adaptive Alternative to Machine Learning\",\"authors\":\"M. Czasonis, M. Kritzman, D. Turkington\",\"doi\":\"10.3905/jfds.2022.1.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe a new prediction system based on relevance, which gives a mathematically precise measure of the importance of an observation to forming a prediction, as well as fit, which measures a specific prediction’s reliability. They show how their relevance-based approach to prediction identifies the optimal combination of observations and predictive variables for any given prediction task, thereby presenting a unified alternative to both kernel regression and lasso regression, which they call CKT regression. They argue that their new prediction system addresses complexities that are beyond the capacity of linear regression analysis but in a way that is more transparent, more flexible, and less arbitrary than widely used machine learning algorithms.\",\"PeriodicalId\":199045,\"journal\":{\"name\":\"The Journal of Financial Data Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Financial Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/jfds.2022.1.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2022.1.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作者描述了一种新的基于相关性的预测系统,它给出了一种数学上精确的衡量观察对形成预测的重要性的方法,以及衡量特定预测可靠性的拟合方法。他们展示了他们基于相关性的预测方法如何为任何给定的预测任务识别观测值和预测变量的最佳组合,从而提出了核回归和套索回归的统一替代方案,他们称之为CKT回归。他们认为,他们的新预测系统解决的复杂性超出了线性回归分析的能力,但比广泛使用的机器学习算法更透明、更灵活、更少武断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relevance-Based Prediction: A Transparent and Adaptive Alternative to Machine Learning
The authors describe a new prediction system based on relevance, which gives a mathematically precise measure of the importance of an observation to forming a prediction, as well as fit, which measures a specific prediction’s reliability. They show how their relevance-based approach to prediction identifies the optimal combination of observations and predictive variables for any given prediction task, thereby presenting a unified alternative to both kernel regression and lasso regression, which they call CKT regression. They argue that their new prediction system addresses complexities that are beyond the capacity of linear regression analysis but in a way that is more transparent, more flexible, and less arbitrary than widely used machine learning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信