基于改进时间卷积网络和有效通道关注的间歇过程故障诊断

X. Liang, L. Guo
{"title":"基于改进时间卷积网络和有效通道关注的间歇过程故障诊断","authors":"X. Liang, L. Guo","doi":"10.1109/iip57348.2022.00033","DOIUrl":null,"url":null,"abstract":"Aiming at the nonlinear and non-gaussian characteristics of batch processes, a fault diagnosis model for batch processes according to the improved time convolution network(TCN) and efficient channel attention(ECA) is proposed. Standardize the 3D data, and then input the standardized data into the model combined with the time convolution network of hybrid dilated convolution and efficient channel attention to extract features. Finally, use the softmax function to output the fault diagnosis tag. The excellence of the proposed model is verified by the simulation of penicillin experimental data and the comparison with the classical depth learning method.","PeriodicalId":412907,"journal":{"name":"2022 4th International Conference on Intelligent Information Processing (IIP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis of batch process based on improved time convolution network and efficient channel attention\",\"authors\":\"X. Liang, L. Guo\",\"doi\":\"10.1109/iip57348.2022.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the nonlinear and non-gaussian characteristics of batch processes, a fault diagnosis model for batch processes according to the improved time convolution network(TCN) and efficient channel attention(ECA) is proposed. Standardize the 3D data, and then input the standardized data into the model combined with the time convolution network of hybrid dilated convolution and efficient channel attention to extract features. Finally, use the softmax function to output the fault diagnosis tag. The excellence of the proposed model is verified by the simulation of penicillin experimental data and the comparison with the classical depth learning method.\",\"PeriodicalId\":412907,\"journal\":{\"name\":\"2022 4th International Conference on Intelligent Information Processing (IIP)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Intelligent Information Processing (IIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iip57348.2022.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Intelligent Information Processing (IIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iip57348.2022.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对间歇过程的非线性和非高斯特性,提出了一种基于改进时间卷积网络(TCN)和有效信道注意(ECA)的间歇过程故障诊断模型。对三维数据进行标准化,然后结合混合扩展卷积的时间卷积网络和高效通道关注将标准化数据输入到模型中提取特征。最后,使用softmax函数输出故障诊断标签。通过对青霉素实验数据的仿真以及与经典深度学习方法的比较,验证了所提模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault diagnosis of batch process based on improved time convolution network and efficient channel attention
Aiming at the nonlinear and non-gaussian characteristics of batch processes, a fault diagnosis model for batch processes according to the improved time convolution network(TCN) and efficient channel attention(ECA) is proposed. Standardize the 3D data, and then input the standardized data into the model combined with the time convolution network of hybrid dilated convolution and efficient channel attention to extract features. Finally, use the softmax function to output the fault diagnosis tag. The excellence of the proposed model is verified by the simulation of penicillin experimental data and the comparison with the classical depth learning method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信