Shaoyuan Huang, Hengda Zhang, Xiaofei Wang, Min Chen, Jianxin Li, Victor C. M. Leung
{"title":"5G时代基于时空社会多特征的内容交付服务细粒度热点预测","authors":"Shaoyuan Huang, Hengda Zhang, Xiaofei Wang, Min Chen, Jianxin Li, Victor C. M. Leung","doi":"10.1145/3459637.3482298","DOIUrl":null,"url":null,"abstract":"The arrival of 5G networks has extensively promoted the growth of content delivery services (CDSs). Understanding and predicting the spatio-temporal distribution of CDSs are beneficial to mobile users, Internet Content Providers and carriers. Conventional methods for predicting the spatio-temporal distribution of CDSs are mostly base-stations (BSs) centric, leading to weak generalization and spatio coarse-grained. To improve the spatio accuracy and generalization of modeling, we propose user-centric methods for CDSs spatio-temporal analysis. With geocoding and spatio-temporal graphs modeling algorithms, CDSs records collected from mobile devices are modeled as dynamic graphs with spatio-temporal attributes. Moreover, we propose a spatio-temporal-social multi-feature extraction framework for spatio fine-grained CDSs hot spots prediction. Specifically, an edge-enhanced graph convolutional block is designed to encode CDSs information based on the social relations and the spatio dependence features. Besides, we introduce the Long Short Term Memory (LSTM) to further capture the temporal dependence. Experiments on two real-world CDSs datasets verified the effectiveness of the proposed framework, and ablation studies are taken to evaluate the importance of each feature.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatio-Temporal-Social Multi-Feature-based Fine-Grained Hot Spots Prediction for Content Delivery Services in 5G Era\",\"authors\":\"Shaoyuan Huang, Hengda Zhang, Xiaofei Wang, Min Chen, Jianxin Li, Victor C. M. Leung\",\"doi\":\"10.1145/3459637.3482298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The arrival of 5G networks has extensively promoted the growth of content delivery services (CDSs). Understanding and predicting the spatio-temporal distribution of CDSs are beneficial to mobile users, Internet Content Providers and carriers. Conventional methods for predicting the spatio-temporal distribution of CDSs are mostly base-stations (BSs) centric, leading to weak generalization and spatio coarse-grained. To improve the spatio accuracy and generalization of modeling, we propose user-centric methods for CDSs spatio-temporal analysis. With geocoding and spatio-temporal graphs modeling algorithms, CDSs records collected from mobile devices are modeled as dynamic graphs with spatio-temporal attributes. Moreover, we propose a spatio-temporal-social multi-feature extraction framework for spatio fine-grained CDSs hot spots prediction. Specifically, an edge-enhanced graph convolutional block is designed to encode CDSs information based on the social relations and the spatio dependence features. Besides, we introduce the Long Short Term Memory (LSTM) to further capture the temporal dependence. Experiments on two real-world CDSs datasets verified the effectiveness of the proposed framework, and ablation studies are taken to evaluate the importance of each feature.\",\"PeriodicalId\":405296,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3482298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatio-Temporal-Social Multi-Feature-based Fine-Grained Hot Spots Prediction for Content Delivery Services in 5G Era
The arrival of 5G networks has extensively promoted the growth of content delivery services (CDSs). Understanding and predicting the spatio-temporal distribution of CDSs are beneficial to mobile users, Internet Content Providers and carriers. Conventional methods for predicting the spatio-temporal distribution of CDSs are mostly base-stations (BSs) centric, leading to weak generalization and spatio coarse-grained. To improve the spatio accuracy and generalization of modeling, we propose user-centric methods for CDSs spatio-temporal analysis. With geocoding and spatio-temporal graphs modeling algorithms, CDSs records collected from mobile devices are modeled as dynamic graphs with spatio-temporal attributes. Moreover, we propose a spatio-temporal-social multi-feature extraction framework for spatio fine-grained CDSs hot spots prediction. Specifically, an edge-enhanced graph convolutional block is designed to encode CDSs information based on the social relations and the spatio dependence features. Besides, we introduce the Long Short Term Memory (LSTM) to further capture the temporal dependence. Experiments on two real-world CDSs datasets verified the effectiveness of the proposed framework, and ablation studies are taken to evaluate the importance of each feature.