一种改进的度量空间相似性搜索结构:在图像数据库中的应用

Y. Hanyf, H. Silkan, H. Labani
{"title":"一种改进的度量空间相似性搜索结构:在图像数据库中的应用","authors":"Y. Hanyf, H. Silkan, H. Labani","doi":"10.1109/CGIV.2016.22","DOIUrl":null,"url":null,"abstract":"In last decades, the similarity search is very required in various fields such as pattern recognition, security, and multimedia databases. Although the metric approach usefulness for speeding similarity search in complex databases, the searching cost optimization still an open problem. In this paper we propose an improvable pivot-based method which can improve its research efficiency based on the past users' queries. Because images are the most data type which are concerned by the similarity search, the proposed method is tested on a real images database. The experiments show that the proposed method can significantly improve its searching efficiency relying on queries resolution.","PeriodicalId":351561,"journal":{"name":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improvable Structure for Similarity Searching in Metric Spaces: Application on Image Databases\",\"authors\":\"Y. Hanyf, H. Silkan, H. Labani\",\"doi\":\"10.1109/CGIV.2016.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In last decades, the similarity search is very required in various fields such as pattern recognition, security, and multimedia databases. Although the metric approach usefulness for speeding similarity search in complex databases, the searching cost optimization still an open problem. In this paper we propose an improvable pivot-based method which can improve its research efficiency based on the past users' queries. Because images are the most data type which are concerned by the similarity search, the proposed method is tested on a real images database. The experiments show that the proposed method can significantly improve its searching efficiency relying on queries resolution.\",\"PeriodicalId\":351561,\"journal\":{\"name\":\"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGIV.2016.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2016.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近几十年来,相似度搜索在模式识别、安全、多媒体数据库等领域得到了广泛的应用。虽然度量方法对加快复杂数据库的相似度搜索速度有一定的帮助,但搜索成本的优化仍然是一个有待解决的问题。本文提出了一种改进的基于数据中心的方法,该方法可以根据过去用户的查询来提高其搜索效率。由于图像是最受相似度搜索关注的数据类型,本文提出的方法在真实图像数据库上进行了验证。实验结果表明,该方法可以显著提高基于查询分辨率的搜索效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improvable Structure for Similarity Searching in Metric Spaces: Application on Image Databases
In last decades, the similarity search is very required in various fields such as pattern recognition, security, and multimedia databases. Although the metric approach usefulness for speeding similarity search in complex databases, the searching cost optimization still an open problem. In this paper we propose an improvable pivot-based method which can improve its research efficiency based on the past users' queries. Because images are the most data type which are concerned by the similarity search, the proposed method is tested on a real images database. The experiments show that the proposed method can significantly improve its searching efficiency relying on queries resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信