基于图像的实时火灾探测,使用深度学习和数据增强,用于基于视觉的监视应用

Li-Wei Kang, I-Shan Wang, Ke-Lin Chou, Shih-Yu Chen, Chuan-Yu Chang
{"title":"基于图像的实时火灾探测,使用深度学习和数据增强,用于基于视觉的监视应用","authors":"Li-Wei Kang, I-Shan Wang, Ke-Lin Chou, Shih-Yu Chen, Chuan-Yu Chang","doi":"10.1109/AVSS.2019.8909899","DOIUrl":null,"url":null,"abstract":"With recent advances in embedded processing capability, vision-based real-time fire detection has been enabled in surveillance devices. This paper presents an image-based fire detection framework based on deep learning. The key is to learn a fire detector relying on tiny-YOLO (You Only Look Once) v3 deep model. With the advantage of lightweight architecture of tiny-YOLOv3 and training data augmentation by some parameter adjusting, our fire detection model can achieve better detection accuracy in real-time with lower complexity in the training stage. Experimental results have verified the effectiveness of the proposed framework.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Image-Based Real-Time Fire Detection using Deep Learning with Data Augmentation for Vision-Based Surveillance Applications\",\"authors\":\"Li-Wei Kang, I-Shan Wang, Ke-Lin Chou, Shih-Yu Chen, Chuan-Yu Chang\",\"doi\":\"10.1109/AVSS.2019.8909899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With recent advances in embedded processing capability, vision-based real-time fire detection has been enabled in surveillance devices. This paper presents an image-based fire detection framework based on deep learning. The key is to learn a fire detector relying on tiny-YOLO (You Only Look Once) v3 deep model. With the advantage of lightweight architecture of tiny-YOLOv3 and training data augmentation by some parameter adjusting, our fire detection model can achieve better detection accuracy in real-time with lower complexity in the training stage. Experimental results have verified the effectiveness of the proposed framework.\",\"PeriodicalId\":243194,\"journal\":{\"name\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2019.8909899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

随着嵌入式处理能力的最新进展,基于视觉的实时火灾探测已经在监视设备中实现。提出了一种基于深度学习的基于图像的火灾检测框架。关键是要学习一个火灾探测器依靠微小的yolo(你只看一次)v3深度模型。利用tiny-YOLOv3的轻量化架构和通过一些参数调整增强训练数据的优势,我们的火灾探测模型可以在较低的训练复杂度下实现更好的实时探测精度。实验结果验证了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image-Based Real-Time Fire Detection using Deep Learning with Data Augmentation for Vision-Based Surveillance Applications
With recent advances in embedded processing capability, vision-based real-time fire detection has been enabled in surveillance devices. This paper presents an image-based fire detection framework based on deep learning. The key is to learn a fire detector relying on tiny-YOLO (You Only Look Once) v3 deep model. With the advantage of lightweight architecture of tiny-YOLOv3 and training data augmentation by some parameter adjusting, our fire detection model can achieve better detection accuracy in real-time with lower complexity in the training stage. Experimental results have verified the effectiveness of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信