椰网:一个应用于细粒度鸟类分类的协同卷积网络

Tapabrata (Rohan) Chakraborty, B. McCane, S. Mills, U. Pal
{"title":"椰网:一个应用于细粒度鸟类分类的协同卷积网络","authors":"Tapabrata (Rohan) Chakraborty, B. McCane, S. Mills, U. Pal","doi":"10.1109/IVCNZ51579.2020.9290677","DOIUrl":null,"url":null,"abstract":"We present an end-to-end deep network for fine-grained visual categorization called Collaborative Convolutional Network (CoCoNet). The network uses a collaborative layer after the convolutional layers to represent an image as an optimal weighted collaboration of features learned from training samples as a whole rather than one at a time. This gives CoCoNet more power to encode the fine-grained nature of the data with limited samples. We perform a detailed study of the performance with 1-stage and 2-stage transfer learning. The ablation study shows that the proposed method outperforms its constituent parts consistently. CoCoNet also outperforms few state-of-the-art competing methods. Experiments have been performed on the fine-grained bird species classification problem as a representative example, but the method may be applied to other similar tasks. We also introduce a new public dataset for fine-grained species recognition, that of Indian endemic birds and have reported initial results on it.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CoCoNet: A Collaborative Convolutional Network applied to fine-grained bird species classification\",\"authors\":\"Tapabrata (Rohan) Chakraborty, B. McCane, S. Mills, U. Pal\",\"doi\":\"10.1109/IVCNZ51579.2020.9290677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an end-to-end deep network for fine-grained visual categorization called Collaborative Convolutional Network (CoCoNet). The network uses a collaborative layer after the convolutional layers to represent an image as an optimal weighted collaboration of features learned from training samples as a whole rather than one at a time. This gives CoCoNet more power to encode the fine-grained nature of the data with limited samples. We perform a detailed study of the performance with 1-stage and 2-stage transfer learning. The ablation study shows that the proposed method outperforms its constituent parts consistently. CoCoNet also outperforms few state-of-the-art competing methods. Experiments have been performed on the fine-grained bird species classification problem as a representative example, but the method may be applied to other similar tasks. We also introduce a new public dataset for fine-grained species recognition, that of Indian endemic birds and have reported initial results on it.\",\"PeriodicalId\":164317,\"journal\":{\"name\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVCNZ51579.2020.9290677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种用于细粒度视觉分类的端到端深度网络,称为协同卷积网络(CoCoNet)。该网络在卷积层之后使用协作层,将图像表示为从训练样本中学习到的整体特征的最佳加权协作,而不是一次一个。这使CoCoNet更有能力用有限的样本对数据的细粒度特性进行编码。我们对一阶段和两阶段迁移学习的表现进行了详细的研究。烧蚀研究表明,该方法的性能始终优于其组成部分。此外,CoCoNet的表现也胜过了一些最先进的竞争方法。以细粒度鸟类物种分类问题为例进行了实验,但该方法可以应用于其他类似的任务。我们还引入了一个用于细粒度物种识别的新公共数据集,即印度特有鸟类的数据集,并报告了它的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoCoNet: A Collaborative Convolutional Network applied to fine-grained bird species classification
We present an end-to-end deep network for fine-grained visual categorization called Collaborative Convolutional Network (CoCoNet). The network uses a collaborative layer after the convolutional layers to represent an image as an optimal weighted collaboration of features learned from training samples as a whole rather than one at a time. This gives CoCoNet more power to encode the fine-grained nature of the data with limited samples. We perform a detailed study of the performance with 1-stage and 2-stage transfer learning. The ablation study shows that the proposed method outperforms its constituent parts consistently. CoCoNet also outperforms few state-of-the-art competing methods. Experiments have been performed on the fine-grained bird species classification problem as a representative example, but the method may be applied to other similar tasks. We also introduce a new public dataset for fine-grained species recognition, that of Indian endemic birds and have reported initial results on it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信