自动化代数证明系统是np困难的

Mika Göös, Jakob Nordström, T. Pitassi, Robert Robere, Dmitry Sokolov, Susanna F. de Rezende
{"title":"自动化代数证明系统是np困难的","authors":"Mika Göös, Jakob Nordström, T. Pitassi, Robert Robere, Dmitry Sokolov, Susanna F. de Rezende","doi":"10.1145/3406325.3451080","DOIUrl":null,"url":null,"abstract":"We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula F, it is NP-hard to find a refutation of F in the Nullstellensatz, Polynomial Calculus, or Sherali–Adams proof systems in time polynomial in the size of the shortest such refutation. Our work extends, and gives a simplified proof of, the recent breakthrough of Atserias and Müller (JACM 2020) that established an analogous result for Resolution.","PeriodicalId":132752,"journal":{"name":"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Automating algebraic proof systems is NP-hard\",\"authors\":\"Mika Göös, Jakob Nordström, T. Pitassi, Robert Robere, Dmitry Sokolov, Susanna F. de Rezende\",\"doi\":\"10.1145/3406325.3451080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula F, it is NP-hard to find a refutation of F in the Nullstellensatz, Polynomial Calculus, or Sherali–Adams proof systems in time polynomial in the size of the shortest such refutation. Our work extends, and gives a simplified proof of, the recent breakthrough of Atserias and Müller (JACM 2020) that established an analogous result for Resolution.\",\"PeriodicalId\":132752,\"journal\":{\"name\":\"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3406325.3451080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406325.3451080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们证明了代数证明是很难找到的:给定一个不满足的CNF公式F,在最短的时间多项式的Nullstellensatz,多项式微积分或Sherali-Adams证明系统中找到F的反驳是np -困难的。我们的工作扩展了Atserias和m ller (JACM 2020)最近的突破,并给出了一个简化的证明,该突破为分辨率建立了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating algebraic proof systems is NP-hard
We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula F, it is NP-hard to find a refutation of F in the Nullstellensatz, Polynomial Calculus, or Sherali–Adams proof systems in time polynomial in the size of the shortest such refutation. Our work extends, and gives a simplified proof of, the recent breakthrough of Atserias and Müller (JACM 2020) that established an analogous result for Resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信