PUF实现对机器学习攻击的抗篡改性评估

Y. Nozaki, M. Yoshikawa
{"title":"PUF实现对机器学习攻击的抗篡改性评估","authors":"Y. Nozaki, M. Yoshikawa","doi":"10.1145/3077829.3077830","DOIUrl":null,"url":null,"abstract":"Recently, the semiconductor counterfeiting has become a serious problem. To counter this problem, Physical Unclonable Function (PUF) has been attracted attention. However, the risk of machine learning attacks for PUF is pointed out. To verify the safety of PUF, the evaluation (tamper resistance) against machine learning attacks in the difference of PUF implementations is very important. However, the tamper resistance evaluation in the difference of PUF implementation has barely been reported. Therefore, this study evaluates the tamper resistance of PUF in the difference of field programmable gate array (FPGA) implementations against machine learning attacks. Experiments using an FPGA clarified the arbiter PUF of the lookup table implementation has the tamper resistance against machine learning attacks.","PeriodicalId":262849,"journal":{"name":"International Conference on Biometrics Engineering and Application","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tamper resistance evaluation of PUF implementation against machine learning attack\",\"authors\":\"Y. Nozaki, M. Yoshikawa\",\"doi\":\"10.1145/3077829.3077830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the semiconductor counterfeiting has become a serious problem. To counter this problem, Physical Unclonable Function (PUF) has been attracted attention. However, the risk of machine learning attacks for PUF is pointed out. To verify the safety of PUF, the evaluation (tamper resistance) against machine learning attacks in the difference of PUF implementations is very important. However, the tamper resistance evaluation in the difference of PUF implementation has barely been reported. Therefore, this study evaluates the tamper resistance of PUF in the difference of field programmable gate array (FPGA) implementations against machine learning attacks. Experiments using an FPGA clarified the arbiter PUF of the lookup table implementation has the tamper resistance against machine learning attacks.\",\"PeriodicalId\":262849,\"journal\":{\"name\":\"International Conference on Biometrics Engineering and Application\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Biometrics Engineering and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3077829.3077830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Biometrics Engineering and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077829.3077830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,半导体假冒已成为一个严重的问题。为了解决这一问题,物理不可克隆功能(Physical unclable Function, PUF)引起了人们的关注。然而,指出了PUF的机器学习攻击风险。为了验证PUF的安全性,在不同的PUF实现中对机器学习攻击的抗篡改性评估是非常重要的。然而,PUF实施差异的抗篡改评价却鲜有报道。因此,本研究评估了PUF在不同现场可编程门阵列(FPGA)实现中对机器学习攻击的抗篡改性。使用FPGA的实验表明,查找表实现的仲裁PUF具有抗机器学习攻击的抗篡改能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tamper resistance evaluation of PUF implementation against machine learning attack
Recently, the semiconductor counterfeiting has become a serious problem. To counter this problem, Physical Unclonable Function (PUF) has been attracted attention. However, the risk of machine learning attacks for PUF is pointed out. To verify the safety of PUF, the evaluation (tamper resistance) against machine learning attacks in the difference of PUF implementations is very important. However, the tamper resistance evaluation in the difference of PUF implementation has barely been reported. Therefore, this study evaluates the tamper resistance of PUF in the difference of field programmable gate array (FPGA) implementations against machine learning attacks. Experiments using an FPGA clarified the arbiter PUF of the lookup table implementation has the tamper resistance against machine learning attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信