坎贝尔定理在非平稳噪声中的推广

L. Cohen
{"title":"坎贝尔定理在非平稳噪声中的推广","authors":"L. Cohen","doi":"10.5281/ZENODO.44199","DOIUrl":null,"url":null,"abstract":"Campbell's theorem is a fundamental result in noise theory and is applied in many fields of science and engineering. It gives a simple but very powerful expression for the mean and standard deviation of a stationary random pulse train. We generalize Campbell's theorem to the non-stationary case where the random process is space and time dependent. We also generalize it to a pulse train of waves, acoustic and electromagnetic, where the intensity is defined as the absolute square of the pulse train.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalization of Campbell's theorem to nonstationary noise\",\"authors\":\"L. Cohen\",\"doi\":\"10.5281/ZENODO.44199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Campbell's theorem is a fundamental result in noise theory and is applied in many fields of science and engineering. It gives a simple but very powerful expression for the mean and standard deviation of a stationary random pulse train. We generalize Campbell's theorem to the non-stationary case where the random process is space and time dependent. We also generalize it to a pulse train of waves, acoustic and electromagnetic, where the intensity is defined as the absolute square of the pulse train.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

坎贝尔定理是噪声理论中的一个基本结论,在科学和工程的许多领域都有应用。它给出了平稳随机脉冲序列的均值和标准差的一个简单而有力的表达式。我们将坎贝尔定理推广到随机过程依赖于空间和时间的非平稳情况。我们还将其推广到声波和电磁波的脉冲序列,其中强度定义为脉冲序列的绝对平方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of Campbell's theorem to nonstationary noise
Campbell's theorem is a fundamental result in noise theory and is applied in many fields of science and engineering. It gives a simple but very powerful expression for the mean and standard deviation of a stationary random pulse train. We generalize Campbell's theorem to the non-stationary case where the random process is space and time dependent. We also generalize it to a pulse train of waves, acoustic and electromagnetic, where the intensity is defined as the absolute square of the pulse train.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信