Kriging张量序列数据格式

S. Dolgov, A. Litvinenko, Dishi Liu
{"title":"Kriging张量序列数据格式","authors":"S. Dolgov, A. Litvinenko, Dishi Liu","doi":"10.7712/120219.6343.18651","DOIUrl":null,"url":null,"abstract":"Combination of low-tensor rank techniques and the Fast Fourier transform (FFT) based methods had turned out to be prominent in accelerating various statistical operations such as Kriging, computing conditional covariance, geostatistical optimal design, and others. However, the approximation of a full tensor by its low-rank format can be computationally formidable. In this work, we incorporate the robust Tensor Train (TT) approximation of covariance matrices and the efficient TT-Cross algorithm into the FFT-based Kriging. It is shown that here the computational complexity of Kriging is reduced to $\\mathcal{O}(d r^3 n)$, where $n$ is the mode size of the estimation grid, $d$ is the number of variables (the dimension), and $r$ is the rank of the TT approximation of the covariance matrix. For many popular covariance functions the TT rank $r$ remains stable for increasing $n$ and $d$. The advantages of this approach against those using plain FFT are demonstrated in synthetic and real data examples.","PeriodicalId":153829,"journal":{"name":"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"KRIGING IN TENSOR TRAIN DATA FORMAT\",\"authors\":\"S. Dolgov, A. Litvinenko, Dishi Liu\",\"doi\":\"10.7712/120219.6343.18651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combination of low-tensor rank techniques and the Fast Fourier transform (FFT) based methods had turned out to be prominent in accelerating various statistical operations such as Kriging, computing conditional covariance, geostatistical optimal design, and others. However, the approximation of a full tensor by its low-rank format can be computationally formidable. In this work, we incorporate the robust Tensor Train (TT) approximation of covariance matrices and the efficient TT-Cross algorithm into the FFT-based Kriging. It is shown that here the computational complexity of Kriging is reduced to $\\\\mathcal{O}(d r^3 n)$, where $n$ is the mode size of the estimation grid, $d$ is the number of variables (the dimension), and $r$ is the rank of the TT approximation of the covariance matrix. For many popular covariance functions the TT rank $r$ remains stable for increasing $n$ and $d$. The advantages of this approach against those using plain FFT are demonstrated in synthetic and real data examples.\",\"PeriodicalId\":153829,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7712/120219.6343.18651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7712/120219.6343.18651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

低张量秩技术与基于快速傅立叶变换(FFT)的方法相结合,在加速各种统计操作(如克里格、计算条件协方差、地质统计优化设计等)方面表现突出。然而,用低秩格式来逼近全张量在计算上是很困难的。在这项工作中,我们将协方差矩阵的鲁棒张量训练(TT)逼近和高效的TT- cross算法结合到基于fft的Kriging中。结果表明,Kriging的计算复杂度被简化为$\mathcal{O}(d r^ 3n)$,其中$n$为估计网格的模态大小,$d$为变量数(维数),$r$为协方差矩阵的TT近似的秩。对于许多流行的协方差函数,随着n和d的增加,TT秩r保持稳定。这种方法相对于使用普通FFT的方法的优势在合成和实际数据示例中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KRIGING IN TENSOR TRAIN DATA FORMAT
Combination of low-tensor rank techniques and the Fast Fourier transform (FFT) based methods had turned out to be prominent in accelerating various statistical operations such as Kriging, computing conditional covariance, geostatistical optimal design, and others. However, the approximation of a full tensor by its low-rank format can be computationally formidable. In this work, we incorporate the robust Tensor Train (TT) approximation of covariance matrices and the efficient TT-Cross algorithm into the FFT-based Kriging. It is shown that here the computational complexity of Kriging is reduced to $\mathcal{O}(d r^3 n)$, where $n$ is the mode size of the estimation grid, $d$ is the number of variables (the dimension), and $r$ is the rank of the TT approximation of the covariance matrix. For many popular covariance functions the TT rank $r$ remains stable for increasing $n$ and $d$. The advantages of this approach against those using plain FFT are demonstrated in synthetic and real data examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信