基于多智能体同质性的社交网络社区检测方法

H. Zardi, L. Romdhane, Z. Guessoum
{"title":"基于多智能体同质性的社交网络社区检测方法","authors":"H. Zardi, L. Romdhane, Z. Guessoum","doi":"10.1109/ICTAI.2014.81","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an agent-based approach for modeling dynamic connections in social networks. The key contribution of our work is the definition of a similarity measure for computing the strength of relationships between the social network members. For this purpose, we take into consideration the members' properties, the topological structure of the network and information about the interchange between each connected pair. To well choose the properties of social members, we use the concept of homophily. We show that our approach improves the effectiveness of the community detection process.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Multi-agent Homophily-Based Approach for Community Detection in Social Networks\",\"authors\":\"H. Zardi, L. Romdhane, Z. Guessoum\",\"doi\":\"10.1109/ICTAI.2014.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an agent-based approach for modeling dynamic connections in social networks. The key contribution of our work is the definition of a similarity measure for computing the strength of relationships between the social network members. For this purpose, we take into consideration the members' properties, the topological structure of the network and information about the interchange between each connected pair. To well choose the properties of social members, we use the concept of homophily. We show that our approach improves the effectiveness of the community detection process.\",\"PeriodicalId\":142794,\"journal\":{\"name\":\"2014 IEEE 26th International Conference on Tools with Artificial Intelligence\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 26th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2014.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一种基于智能体的方法来建模社交网络中的动态连接。我们工作的关键贡献是定义了用于计算社会网络成员之间关系强度的相似性度量。为此,我们考虑了成员的性质、网络的拓扑结构和每个连接对之间交换的信息。为了更好地选择社会成员的属性,我们使用了同质性的概念。我们表明,我们的方法提高了社区检测过程的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-agent Homophily-Based Approach for Community Detection in Social Networks
In this paper, we propose an agent-based approach for modeling dynamic connections in social networks. The key contribution of our work is the definition of a similarity measure for computing the strength of relationships between the social network members. For this purpose, we take into consideration the members' properties, the topological structure of the network and information about the interchange between each connected pair. To well choose the properties of social members, we use the concept of homophily. We show that our approach improves the effectiveness of the community detection process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信