GCMCSR:一种新的边信息重构图卷积矩阵完备方法

Kun Niu, Yicong Yu, Xipeng Cao, Chao Wang
{"title":"GCMCSR:一种新的边信息重构图卷积矩阵完备方法","authors":"Kun Niu, Yicong Yu, Xipeng Cao, Chao Wang","doi":"10.1109/ICDMW51313.2020.00033","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel Graph Convolutional Matrix Completion with Side-information Reconstruction (GCMCSR) model for the recommender system. For most recommender systems, the side-informations of users and items are usually utilized as the input of the model. However, when new users or new projects are included, the system's performance can degrade significantly. In GCMCSR, to solve this problem, we take the side-information as labels to predict under a multi-task learning framework, which contains a graph-based matrix completion task and a side-information reconstruction task. We borrow the idea of Graph Convolutional Matrix Completion (GCMC) to acquire user/item representation by spatial information extracted from the user-item bipartite graph. The experiment results show that our model achieved state-of-the-art performance on all three public datasets.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GCMCSR: A New Graph Convolution Matrix Complete Method with Side-Information Reconstruction\",\"authors\":\"Kun Niu, Yicong Yu, Xipeng Cao, Chao Wang\",\"doi\":\"10.1109/ICDMW51313.2020.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a novel Graph Convolutional Matrix Completion with Side-information Reconstruction (GCMCSR) model for the recommender system. For most recommender systems, the side-informations of users and items are usually utilized as the input of the model. However, when new users or new projects are included, the system's performance can degrade significantly. In GCMCSR, to solve this problem, we take the side-information as labels to predict under a multi-task learning framework, which contains a graph-based matrix completion task and a side-information reconstruction task. We borrow the idea of Graph Convolutional Matrix Completion (GCMC) to acquire user/item representation by spatial information extracted from the user-item bipartite graph. The experiment results show that our model achieved state-of-the-art performance on all three public datasets.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种新的带有侧信息重建的图卷积矩阵补全(GCMCSR)模型。对于大多数推荐系统来说,通常使用用户和商品的侧信息作为模型的输入。但是,当包含新用户或新项目时,系统的性能可能会显著降低。在GCMCSR中,为了解决这一问题,我们在多任务学习框架下以侧信息作为标签进行预测,该框架包含一个基于图的矩阵补全任务和一个侧信息重建任务。我们借用图卷积矩阵补全(GCMC)的思想,通过从用户-物品二部图中提取空间信息来获得用户/物品的表示。实验结果表明,我们的模型在所有三个公共数据集上都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GCMCSR: A New Graph Convolution Matrix Complete Method with Side-Information Reconstruction
In this work, we propose a novel Graph Convolutional Matrix Completion with Side-information Reconstruction (GCMCSR) model for the recommender system. For most recommender systems, the side-informations of users and items are usually utilized as the input of the model. However, when new users or new projects are included, the system's performance can degrade significantly. In GCMCSR, to solve this problem, we take the side-information as labels to predict under a multi-task learning framework, which contains a graph-based matrix completion task and a side-information reconstruction task. We borrow the idea of Graph Convolutional Matrix Completion (GCMC) to acquire user/item representation by spatial information extracted from the user-item bipartite graph. The experiment results show that our model achieved state-of-the-art performance on all three public datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信