利用MPEG-7和多类支持向量机改进图像自动标注的交互式工具

Jafar Majidpour, Edris Khezri, Hiwa Hassanzade, Kamal Smail Mohammed
{"title":"利用MPEG-7和多类支持向量机改进图像自动标注的交互式工具","authors":"Jafar Majidpour, Edris Khezri, Hiwa Hassanzade, Kamal Smail Mohammed","doi":"10.1109/IKT.2015.7288777","DOIUrl":null,"url":null,"abstract":"Automatic Image Annotation is a technique or a tool to retrieve content-based and semantic concepts images [1]. In technique, the image content is attached to a set of predefined switches. Content-Based Image Retrieval (CBIR) allows the users to retrieve the images efficiently. The image features are automatically extractable using image processing techniques. In this study, we proposed automatic image annotation using standardized color and texture called MPEG-7. These features include Color Layout Descriptor (CLD) and Scalable Color Descriptor (SCD) for colors and Edge Histogram Descriptor (EHD) for image texture. Moreover, to decrease the scope of color layout descriptor, we used Principal Components Analysis (PCA) and for classification we used Support Vector Machine (SVM). For an input search image, the above mentioned features are extracted and classification by Support Vector Machine and prepared to perform the image annotation. This system also presents the results of the comparison between different features from the MPEG-7 descriptors. The automatic image annotation which is presented in this study is related to TUDarmstadt images. The results confirm that the system is a reliable system which has both short vector length (maximum 400 elements for each image) and high precision of 90 percent.","PeriodicalId":338953,"journal":{"name":"2015 7th Conference on Information and Knowledge Technology (IKT)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Interactive tool to improve the automatic image annotation using MPEG-7 and multi-class SVM\",\"authors\":\"Jafar Majidpour, Edris Khezri, Hiwa Hassanzade, Kamal Smail Mohammed\",\"doi\":\"10.1109/IKT.2015.7288777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Image Annotation is a technique or a tool to retrieve content-based and semantic concepts images [1]. In technique, the image content is attached to a set of predefined switches. Content-Based Image Retrieval (CBIR) allows the users to retrieve the images efficiently. The image features are automatically extractable using image processing techniques. In this study, we proposed automatic image annotation using standardized color and texture called MPEG-7. These features include Color Layout Descriptor (CLD) and Scalable Color Descriptor (SCD) for colors and Edge Histogram Descriptor (EHD) for image texture. Moreover, to decrease the scope of color layout descriptor, we used Principal Components Analysis (PCA) and for classification we used Support Vector Machine (SVM). For an input search image, the above mentioned features are extracted and classification by Support Vector Machine and prepared to perform the image annotation. This system also presents the results of the comparison between different features from the MPEG-7 descriptors. The automatic image annotation which is presented in this study is related to TUDarmstadt images. The results confirm that the system is a reliable system which has both short vector length (maximum 400 elements for each image) and high precision of 90 percent.\",\"PeriodicalId\":338953,\"journal\":{\"name\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT.2015.7288777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT.2015.7288777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

自动图像标注是一种检索基于内容和语义概念的图像的技术或工具[1]。在技术上,图像内容附加到一组预定义的开关。基于内容的图像检索(CBIR)使用户能够高效地检索图像。使用图像处理技术自动提取图像特征。在这项研究中,我们提出了使用标准化颜色和纹理的自动图像注释,称为MPEG-7。这些特性包括颜色布局描述符(CLD)和可扩展颜色描述符(SCD)以及图像纹理的边缘直方图描述符(EHD)。此外,为了缩小颜色布局描述符的范围,我们使用了主成分分析(PCA),并使用支持向量机(SVM)进行分类。对于输入搜索图像,使用支持向量机对上述特征进行提取和分类,并准备进行图像标注。本系统还给出了MPEG-7描述符中不同特征的比较结果。本文提出的自动图像标注与TUDarmstadt图像有关。结果表明,该系统矢量长度短(每张图像最多400个元素),精度高达90%,是一种可靠的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive tool to improve the automatic image annotation using MPEG-7 and multi-class SVM
Automatic Image Annotation is a technique or a tool to retrieve content-based and semantic concepts images [1]. In technique, the image content is attached to a set of predefined switches. Content-Based Image Retrieval (CBIR) allows the users to retrieve the images efficiently. The image features are automatically extractable using image processing techniques. In this study, we proposed automatic image annotation using standardized color and texture called MPEG-7. These features include Color Layout Descriptor (CLD) and Scalable Color Descriptor (SCD) for colors and Edge Histogram Descriptor (EHD) for image texture. Moreover, to decrease the scope of color layout descriptor, we used Principal Components Analysis (PCA) and for classification we used Support Vector Machine (SVM). For an input search image, the above mentioned features are extracted and classification by Support Vector Machine and prepared to perform the image annotation. This system also presents the results of the comparison between different features from the MPEG-7 descriptors. The automatic image annotation which is presented in this study is related to TUDarmstadt images. The results confirm that the system is a reliable system which has both short vector length (maximum 400 elements for each image) and high precision of 90 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信