主积分的数量为欧拉特征

Thomas Bitoun, C. Bogner, René Pascal Klausen, E. Panzer
{"title":"主积分的数量为欧拉特征","authors":"Thomas Bitoun, C. Bogner, René Pascal Klausen, E. Panzer","doi":"10.22323/1.303.0065","DOIUrl":null,"url":null,"abstract":"We give a brief introduction to a parametric approach for the derivation of shift relations between Feynman integrals and a result on the number of master integrals. The shift relations are obtained from parametric annihilators of the Lee-Pomeransky polynomial $\\mathcal{G}$. By identification of Feynman integrals as multi-dimensional Mellin transforms, we show that this approach generates every shift relation. Feynman integrals of a given family form a vector space, whose finite dimension is naturally interpreted as the number of master integrals. This number is an Euler characteristic of the polynomial $\\mathcal{G}$.","PeriodicalId":140132,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The number of master integrals as Euler characteristic\",\"authors\":\"Thomas Bitoun, C. Bogner, René Pascal Klausen, E. Panzer\",\"doi\":\"10.22323/1.303.0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a brief introduction to a parametric approach for the derivation of shift relations between Feynman integrals and a result on the number of master integrals. The shift relations are obtained from parametric annihilators of the Lee-Pomeransky polynomial $\\\\mathcal{G}$. By identification of Feynman integrals as multi-dimensional Mellin transforms, we show that this approach generates every shift relation. Feynman integrals of a given family form a vector space, whose finite dimension is naturally interpreted as the number of master integrals. This number is an Euler characteristic of the polynomial $\\\\mathcal{G}$.\",\"PeriodicalId\":140132,\"journal\":{\"name\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.303.0065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.303.0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文简要介绍了费曼积分位移关系的参数化推导方法,并给出了主积分个数的结果。移位关系由Lee-Pomeransky多项式$\mathcal{G}$的参数湮灭子得到。通过将Feynman积分识别为多维Mellin变换,我们证明了这种方法可以生成所有移位关系。给定一族的费曼积分形成一个向量空间,其有限维数自然被解释为主积分的数量。这个数是多项式$\mathcal{G}$的欧拉特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The number of master integrals as Euler characteristic
We give a brief introduction to a parametric approach for the derivation of shift relations between Feynman integrals and a result on the number of master integrals. The shift relations are obtained from parametric annihilators of the Lee-Pomeransky polynomial $\mathcal{G}$. By identification of Feynman integrals as multi-dimensional Mellin transforms, we show that this approach generates every shift relation. Feynman integrals of a given family form a vector space, whose finite dimension is naturally interpreted as the number of master integrals. This number is an Euler characteristic of the polynomial $\mathcal{G}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信