小波神经网络预测太阳辐照度

C. L. Dewangan, S. Singh, S. Chakrabarti
{"title":"小波神经网络预测太阳辐照度","authors":"C. L. Dewangan, S. Singh, S. Chakrabarti","doi":"10.1109/APPEEC.2017.8308987","DOIUrl":null,"url":null,"abstract":"Short-term solar power forecasting is vital for reliable and secure operation of power systems with high PV penetration. This paper implements wavelet neural network (WNN) with Levenberg-Marquardt (LM) training for solar irradiance forecasting for finding the solar power output. It employs wavelets basis as activation functions whose shapes are adaptive in nature. The proposed model has better generalization capability and more accuracy than the conventional sigmoidal neural network (SNN). The outcomes demonstrate that the model can be implemented easily and can enhance the forecasting accuracy.","PeriodicalId":247669,"journal":{"name":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Solar irradiance forecasting using wavelet neural network\",\"authors\":\"C. L. Dewangan, S. Singh, S. Chakrabarti\",\"doi\":\"10.1109/APPEEC.2017.8308987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-term solar power forecasting is vital for reliable and secure operation of power systems with high PV penetration. This paper implements wavelet neural network (WNN) with Levenberg-Marquardt (LM) training for solar irradiance forecasting for finding the solar power output. It employs wavelets basis as activation functions whose shapes are adaptive in nature. The proposed model has better generalization capability and more accuracy than the conventional sigmoidal neural network (SNN). The outcomes demonstrate that the model can be implemented easily and can enhance the forecasting accuracy.\",\"PeriodicalId\":247669,\"journal\":{\"name\":\"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2017.8308987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2017.8308987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

太阳能发电短期预测对于高光伏发电渗透率的电力系统的可靠、安全运行至关重要。本文将小波神经网络(WNN)与Levenberg-Marquardt (LM)训练相结合,用于太阳辐照度预测,以求出太阳功率输出。它采用小波基作为自适应的激活函数。与传统的s型神经网络相比,该模型具有更好的泛化能力和更高的精度。结果表明,该模型易于实现,可提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solar irradiance forecasting using wavelet neural network
Short-term solar power forecasting is vital for reliable and secure operation of power systems with high PV penetration. This paper implements wavelet neural network (WNN) with Levenberg-Marquardt (LM) training for solar irradiance forecasting for finding the solar power output. It employs wavelets basis as activation functions whose shapes are adaptive in nature. The proposed model has better generalization capability and more accuracy than the conventional sigmoidal neural network (SNN). The outcomes demonstrate that the model can be implemented easily and can enhance the forecasting accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信