基于Bi-LSTM递归神经网络的端到端轨迹运输模式分类

Hongbin Liu, Ickjai Lee
{"title":"基于Bi-LSTM递归神经网络的端到端轨迹运输模式分类","authors":"Hongbin Liu, Ickjai Lee","doi":"10.1109/ISKE.2017.8258799","DOIUrl":null,"url":null,"abstract":"Transportation mode classification is a key task in trajectory data mining. It adds human behaviour semantics to raw trajectories for trip recommendation, traffic management and transport planning. Previous approaches require heavy pre-processing and feature extraction processes in order to build a classifier, which is complicated and time-consuming. Recurrent neural network has demonstrated its capacity in sequence modelling tasks ranging from machine translation, speech recognition to image captioning. In this paper, we pro­pose a trajectory transportation mode classification framework that is based on an end-to-end bidirectional LSTM classifier. The proposed classification process does not require any feature extraction process, but automatically learns features from trajectories, and use them for classification. We further improve this framework by feeding the time interval as an external feature by embedding. Our experiments on real GPS datasets demonstrate that our approach outperforms existing methods with regard to AUC.","PeriodicalId":208009,"journal":{"name":"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"End-to-end trajectory transportation mode classification using Bi-LSTM recurrent neural network\",\"authors\":\"Hongbin Liu, Ickjai Lee\",\"doi\":\"10.1109/ISKE.2017.8258799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transportation mode classification is a key task in trajectory data mining. It adds human behaviour semantics to raw trajectories for trip recommendation, traffic management and transport planning. Previous approaches require heavy pre-processing and feature extraction processes in order to build a classifier, which is complicated and time-consuming. Recurrent neural network has demonstrated its capacity in sequence modelling tasks ranging from machine translation, speech recognition to image captioning. In this paper, we pro­pose a trajectory transportation mode classification framework that is based on an end-to-end bidirectional LSTM classifier. The proposed classification process does not require any feature extraction process, but automatically learns features from trajectories, and use them for classification. We further improve this framework by feeding the time interval as an external feature by embedding. Our experiments on real GPS datasets demonstrate that our approach outperforms existing methods with regard to AUC.\",\"PeriodicalId\":208009,\"journal\":{\"name\":\"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2017.8258799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2017.8258799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

运输方式分类是轨迹数据挖掘中的一个关键问题。它将人类行为语义添加到原始轨迹中,用于旅行推荐、交通管理和交通规划。以前的方法需要大量的预处理和特征提取过程来构建分类器,这是复杂和耗时的。递归神经网络已经证明了它在从机器翻译、语音识别到图像字幕等序列建模任务中的能力。本文提出了一种基于端到端双向LSTM分类器的轨迹运输模式分类框架。提出的分类过程不需要任何特征提取过程,而是自动从轨迹中学习特征,并使用它们进行分类。我们进一步改进了该框架,通过嵌入将时间间隔作为外部特征馈送。我们在真实GPS数据集上的实验表明,我们的方法在AUC方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-to-end trajectory transportation mode classification using Bi-LSTM recurrent neural network
Transportation mode classification is a key task in trajectory data mining. It adds human behaviour semantics to raw trajectories for trip recommendation, traffic management and transport planning. Previous approaches require heavy pre-processing and feature extraction processes in order to build a classifier, which is complicated and time-consuming. Recurrent neural network has demonstrated its capacity in sequence modelling tasks ranging from machine translation, speech recognition to image captioning. In this paper, we pro­pose a trajectory transportation mode classification framework that is based on an end-to-end bidirectional LSTM classifier. The proposed classification process does not require any feature extraction process, but automatically learns features from trajectories, and use them for classification. We further improve this framework by feeding the time interval as an external feature by embedding. Our experiments on real GPS datasets demonstrate that our approach outperforms existing methods with regard to AUC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信