基于有限元分析的滚动体轴承缺陷仿真研究

Y. Shao, W. Tu, F. Gu
{"title":"基于有限元分析的滚动体轴承缺陷仿真研究","authors":"Y. Shao, W. Tu, F. Gu","doi":"10.1109/ICCAS.2010.5669813","DOIUrl":null,"url":null,"abstract":"An internal impact usually happens when there is a small defect in one part of rolling bearings. The Fault signal from this impact is always masked by different noises such as strong vibrations from other parts and the random noise of instrumentation, which makes it difficult to extract an accurate feature signal for early fault diagnosis. In this paper, a simulation study is conducted using the method of finite element analysis (FEA) to understand the vibration characteristics from the small impact. The vibration responses have been modelled based on a typical bearing assembly. Common faults including outer ring defect, inner ring defect and rolling ball defect are simulated and their vibration responses are compared between different faults and at different locations in the bearing housing. The results obtained have shown that under the same defect size, the vibration from the outer ring is the highest whereas that from the rolling ball is the smallest. In addition the vibration close to the mounting hole attenuates considerably compared to that close to outer ring. These findings provide fundamental information to place vibration sensors and to analyse vibration signals.","PeriodicalId":158687,"journal":{"name":"ICCAS 2010","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A simulation study of defects in a rolling element bearing using FEA\",\"authors\":\"Y. Shao, W. Tu, F. Gu\",\"doi\":\"10.1109/ICCAS.2010.5669813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An internal impact usually happens when there is a small defect in one part of rolling bearings. The Fault signal from this impact is always masked by different noises such as strong vibrations from other parts and the random noise of instrumentation, which makes it difficult to extract an accurate feature signal for early fault diagnosis. In this paper, a simulation study is conducted using the method of finite element analysis (FEA) to understand the vibration characteristics from the small impact. The vibration responses have been modelled based on a typical bearing assembly. Common faults including outer ring defect, inner ring defect and rolling ball defect are simulated and their vibration responses are compared between different faults and at different locations in the bearing housing. The results obtained have shown that under the same defect size, the vibration from the outer ring is the highest whereas that from the rolling ball is the smallest. In addition the vibration close to the mounting hole attenuates considerably compared to that close to outer ring. These findings provide fundamental information to place vibration sensors and to analyse vibration signals.\",\"PeriodicalId\":158687,\"journal\":{\"name\":\"ICCAS 2010\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAS 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2010.5669813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAS 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2010.5669813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

当滚动轴承的一个部分存在小缺陷时,通常会发生内部冲击。这种冲击产生的故障信号总是被不同的噪声所掩盖,如来自其他部件的强烈振动和仪表的随机噪声,这给提取准确的特征信号进行早期故障诊断带来了困难。本文采用有限元分析(FEA)方法进行了仿真研究,从小冲击的角度了解其振动特性。基于一个典型的轴承组件,建立了振动响应模型。模拟了外圈缺陷、内圈缺陷和滚动球缺陷等常见故障,比较了它们在不同故障和轴承座不同位置的振动响应。结果表明,在缺陷尺寸相同的情况下,外圈产生的振动最大,滚动球产生的振动最小。此外,与靠近外圈的振动相比,靠近安装孔的振动衰减得相当大。这些发现为放置振动传感器和分析振动信号提供了基础信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simulation study of defects in a rolling element bearing using FEA
An internal impact usually happens when there is a small defect in one part of rolling bearings. The Fault signal from this impact is always masked by different noises such as strong vibrations from other parts and the random noise of instrumentation, which makes it difficult to extract an accurate feature signal for early fault diagnosis. In this paper, a simulation study is conducted using the method of finite element analysis (FEA) to understand the vibration characteristics from the small impact. The vibration responses have been modelled based on a typical bearing assembly. Common faults including outer ring defect, inner ring defect and rolling ball defect are simulated and their vibration responses are compared between different faults and at different locations in the bearing housing. The results obtained have shown that under the same defect size, the vibration from the outer ring is the highest whereas that from the rolling ball is the smallest. In addition the vibration close to the mounting hole attenuates considerably compared to that close to outer ring. These findings provide fundamental information to place vibration sensors and to analyse vibration signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信