λ项的Taylor展开式及其刚性近似的群形结构

Federico Olimpieri, Lionel Vaux Auclair
{"title":"λ项的Taylor展开式及其刚性近似的群形结构","authors":"Federico Olimpieri, Lionel Vaux Auclair","doi":"10.46298/lmcs-18(1:1)2022","DOIUrl":null,"url":null,"abstract":"We show that the normal form of the Taylor expansion of a $\\lambda$-term is\nisomorphic to its B\\\"ohm tree, improving Ehrhard and Regnier's original proof\nalong three independent directions. First, we simplify the final step of the\nproof by following the left reduction strategy directly in the resource\ncalculus, avoiding to introduce an abstract machine ad hoc. We also introduce a\ngroupoid of permutations of copies of arguments in a rigid variant of the\nresource calculus, and relate the coefficients of Taylor expansion with this\nstructure, while Ehrhard and Regnier worked with groups of permutations of\noccurrences of variables. Finally, we extend all the results to a\nnondeterministic setting: by contrast with previous attempts, we show that the\nuniformity property that was crucial in Ehrhard and Regnier's approach can be\npreserved in this setting.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Taylor expansion of λ-terms and the groupoid structure of their rigid approximants\",\"authors\":\"Federico Olimpieri, Lionel Vaux Auclair\",\"doi\":\"10.46298/lmcs-18(1:1)2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the normal form of the Taylor expansion of a $\\\\lambda$-term is\\nisomorphic to its B\\\\\\\"ohm tree, improving Ehrhard and Regnier's original proof\\nalong three independent directions. First, we simplify the final step of the\\nproof by following the left reduction strategy directly in the resource\\ncalculus, avoiding to introduce an abstract machine ad hoc. We also introduce a\\ngroupoid of permutations of copies of arguments in a rigid variant of the\\nresource calculus, and relate the coefficients of Taylor expansion with this\\nstructure, while Ehrhard and Regnier worked with groups of permutations of\\noccurrences of variables. Finally, we extend all the results to a\\nnondeterministic setting: by contrast with previous attempts, we show that the\\nuniformity property that was crucial in Ehrhard and Regnier's approach can be\\npreserved in this setting.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/lmcs-18(1:1)2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(1:1)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了与B\ \ ω树同构的$\ \ λ $-项的Taylor展开式的正规形式,沿着三个独立的方向改进了Ehrhard和Regnier的原始证明。首先,我们通过直接在资源演算中遵循左约简策略来简化证明的最后一步,避免了引入抽象机器。我们还在资源演算的刚性变体中引入了参数副本排列的群似体,并将泰勒展开的系数与该结构联系起来,而Ehrhard和Regnier则研究了变量出现的排列群。最后,我们将所有结果扩展到非确定性设置:与之前的尝试相比,我们表明在Ehrhard和Regnier的方法中至关重要的均匀性可以在此设置中保留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Taylor expansion of λ-terms and the groupoid structure of their rigid approximants
We show that the normal form of the Taylor expansion of a $\lambda$-term is isomorphic to its B\"ohm tree, improving Ehrhard and Regnier's original proof along three independent directions. First, we simplify the final step of the proof by following the left reduction strategy directly in the resource calculus, avoiding to introduce an abstract machine ad hoc. We also introduce a groupoid of permutations of copies of arguments in a rigid variant of the resource calculus, and relate the coefficients of Taylor expansion with this structure, while Ehrhard and Regnier worked with groups of permutations of occurrences of variables. Finally, we extend all the results to a nondeterministic setting: by contrast with previous attempts, we show that the uniformity property that was crucial in Ehrhard and Regnier's approach can be preserved in this setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信