阶段:一种用于网络搜索的用户概要学习方法

A. Eckhardt, Tomáš Horváth, P. Vojtás
{"title":"阶段:一种用于网络搜索的用户概要学习方法","authors":"A. Eckhardt, Tomáš Horváth, P. Vojtás","doi":"10.1109/WI.2007.146","DOIUrl":null,"url":null,"abstract":"Web search heuristics based on Fagin 's threshold algorithm assume we have the user profile in the form of particular attribute ordering and a fuzzy aggregation function representing the user combining function. Having these, there are sufficient algorithms for searching top-k answers. Finding particular attribute ordering and aggregation for a user still remains a problem. In this short paper our main contribution is a proof of concept of a new iterative process of acquisition of user preferences and attribute ordering.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"PHASES: A User Profile Learning Approach for Web Search\",\"authors\":\"A. Eckhardt, Tomáš Horváth, P. Vojtás\",\"doi\":\"10.1109/WI.2007.146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web search heuristics based on Fagin 's threshold algorithm assume we have the user profile in the form of particular attribute ordering and a fuzzy aggregation function representing the user combining function. Having these, there are sufficient algorithms for searching top-k answers. Finding particular attribute ordering and aggregation for a user still remains a problem. In this short paper our main contribution is a proof of concept of a new iterative process of acquisition of user preferences and attribute ordering.\",\"PeriodicalId\":192501,\"journal\":{\"name\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2007.146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

基于Fagin阈值算法的Web搜索启发式算法假设我们有特定属性排序形式的用户概要和表示用户组合函数的模糊聚合函数。有了这些,就有足够的算法来搜索前k个答案。为用户找到特定的属性排序和聚合仍然是一个问题。在这篇短文中,我们的主要贡献是证明了获取用户偏好和属性排序的新迭代过程的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PHASES: A User Profile Learning Approach for Web Search
Web search heuristics based on Fagin 's threshold algorithm assume we have the user profile in the form of particular attribute ordering and a fuzzy aggregation function representing the user combining function. Having these, there are sufficient algorithms for searching top-k answers. Finding particular attribute ordering and aggregation for a user still remains a problem. In this short paper our main contribution is a proof of concept of a new iterative process of acquisition of user preferences and attribute ordering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信