雷达信号处理对深度学习分类的影响

Sean J. Kearney, S. Gurbuz
{"title":"雷达信号处理对深度学习分类的影响","authors":"Sean J. Kearney, S. Gurbuz","doi":"10.1109/RadarConf2351548.2023.10149612","DOIUrl":null,"url":null,"abstract":"As radar technology becomes more readily available to researchers and users, it is thus being explored how to better process this data for real-time implementations. To process this radar data, the short time Fourier transform (STFT) has been implemented to then find the micro-Doppler spectrogram. When computing the STFT, there are parameters which can be adjusted to alter the size of the resulting micro-Doppler spectrogram. In this work, these parameters were adjusted to find the optimal representation of micro-Doppler radar returns of human activities, which were recorded using a 77 GHz Frequency Modulated Continuous Wave (FMCW) millimeter wave radar. To determine these optimal combinations, the resulting micro-Doppler spectrograms were used to train and test a Convolutional Autoencoder (CAE). The t-Distributed Stochastic Neighbor Embedding (t-SNE) and k-Nearest Neighbor Classification (kNN) were also utilized to find the nearest representations in a low-dimensional space of the spectrograms.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Radar Signal Processing on Deep Learning-based Classification\",\"authors\":\"Sean J. Kearney, S. Gurbuz\",\"doi\":\"10.1109/RadarConf2351548.2023.10149612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As radar technology becomes more readily available to researchers and users, it is thus being explored how to better process this data for real-time implementations. To process this radar data, the short time Fourier transform (STFT) has been implemented to then find the micro-Doppler spectrogram. When computing the STFT, there are parameters which can be adjusted to alter the size of the resulting micro-Doppler spectrogram. In this work, these parameters were adjusted to find the optimal representation of micro-Doppler radar returns of human activities, which were recorded using a 77 GHz Frequency Modulated Continuous Wave (FMCW) millimeter wave radar. To determine these optimal combinations, the resulting micro-Doppler spectrograms were used to train and test a Convolutional Autoencoder (CAE). The t-Distributed Stochastic Neighbor Embedding (t-SNE) and k-Nearest Neighbor Classification (kNN) were also utilized to find the nearest representations in a low-dimensional space of the spectrograms.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着雷达技术对研究人员和用户的可用性越来越高,人们正在探索如何更好地处理这些数据以实现实时应用。利用短时傅里叶变换(STFT)对雷达数据进行处理,得到微多普勒谱图。当计算STFT时,可以调整一些参数来改变所得微多普勒谱图的大小。在这项工作中,调整这些参数以找到人类活动的微多普勒雷达回波的最佳表示,这些回波是使用77 GHz调频连续波(FMCW)毫米波雷达记录的。为了确定这些最佳组合,所得的微多普勒谱图用于训练和测试卷积自编码器(CAE)。t分布随机邻居嵌入(t-SNE)和k近邻分类(k-Nearest Neighbor Classification, kNN)也被用来在谱图的低维空间中找到最接近的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Radar Signal Processing on Deep Learning-based Classification
As radar technology becomes more readily available to researchers and users, it is thus being explored how to better process this data for real-time implementations. To process this radar data, the short time Fourier transform (STFT) has been implemented to then find the micro-Doppler spectrogram. When computing the STFT, there are parameters which can be adjusted to alter the size of the resulting micro-Doppler spectrogram. In this work, these parameters were adjusted to find the optimal representation of micro-Doppler radar returns of human activities, which were recorded using a 77 GHz Frequency Modulated Continuous Wave (FMCW) millimeter wave radar. To determine these optimal combinations, the resulting micro-Doppler spectrograms were used to train and test a Convolutional Autoencoder (CAE). The t-Distributed Stochastic Neighbor Embedding (t-SNE) and k-Nearest Neighbor Classification (kNN) were also utilized to find the nearest representations in a low-dimensional space of the spectrograms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信