基于查询句的视频检索方法的比较与评价

K. Ueki, Takayuki Hori
{"title":"基于查询句的视频检索方法的比较与评价","authors":"K. Ueki, Takayuki Hori","doi":"10.1145/3399637.3399657","DOIUrl":null,"url":null,"abstract":"Following are two mainstream approaches of video retrieval from large-scale video data using query sentences: (1) an approach to find pre-trained concepts such as objects, persons, scenes, and activities corresponding to a query sentence, and (2) an approach to map a query sentence and images/videos into the same feature space and directly search for images/videos that match the query sentence. In this study, we analyze the advantages and disadvantages of these two approaches using a large-scale video database of TRECVID benchmark and confirm whether the fusion of these approaches can improve video retrieval performance.","PeriodicalId":248664,"journal":{"name":"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison and Evaluation of Video Retrieval Approaches Using Query Sentences\",\"authors\":\"K. Ueki, Takayuki Hori\",\"doi\":\"10.1145/3399637.3399657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following are two mainstream approaches of video retrieval from large-scale video data using query sentences: (1) an approach to find pre-trained concepts such as objects, persons, scenes, and activities corresponding to a query sentence, and (2) an approach to map a query sentence and images/videos into the same feature space and directly search for images/videos that match the query sentence. In this study, we analyze the advantages and disadvantages of these two approaches using a large-scale video database of TRECVID benchmark and confirm whether the fusion of these approaches can improve video retrieval performance.\",\"PeriodicalId\":248664,\"journal\":{\"name\":\"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3399637.3399657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399637.3399657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用查询句从大规模视频数据中检索视频的两种主流方法是:(1)找到与查询句对应的预训练概念,如对象、人物、场景、活动等;(2)将查询句和图像/视频映射到相同的特征空间中,直接搜索与查询句匹配的图像/视频。在本研究中,我们使用TRECVID基准的大型视频数据库分析了这两种方法的优缺点,并验证了这些方法的融合是否可以提高视频检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison and Evaluation of Video Retrieval Approaches Using Query Sentences
Following are two mainstream approaches of video retrieval from large-scale video data using query sentences: (1) an approach to find pre-trained concepts such as objects, persons, scenes, and activities corresponding to a query sentence, and (2) an approach to map a query sentence and images/videos into the same feature space and directly search for images/videos that match the query sentence. In this study, we analyze the advantages and disadvantages of these two approaches using a large-scale video database of TRECVID benchmark and confirm whether the fusion of these approaches can improve video retrieval performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信