强序列阿贝尔群

B. Alspach, Georgina Liversidge
{"title":"强序列阿贝尔群","authors":"B. Alspach, Georgina Liversidge","doi":"10.26493/2590-9770.1291.c54","DOIUrl":null,"url":null,"abstract":"A group is strongly sequenceable if every connected Cayley digraph on the group admits an orthogonal directed cycle or an orthogonal directed path. This paper deals with the problem of whether finite abelian groups are strongly sequenceable. A method based on posets is used to show that if the connection set for a Cayley digraph on an abelian group has cardinality at most nine, then the digraph admits either an orthogonal directed path or an orthogonal directed cycle.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"On strongly sequenceable abelian groups\",\"authors\":\"B. Alspach, Georgina Liversidge\",\"doi\":\"10.26493/2590-9770.1291.c54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A group is strongly sequenceable if every connected Cayley digraph on the group admits an orthogonal directed cycle or an orthogonal directed path. This paper deals with the problem of whether finite abelian groups are strongly sequenceable. A method based on posets is used to show that if the connection set for a Cayley digraph on an abelian group has cardinality at most nine, then the digraph admits either an orthogonal directed path or an orthogonal directed cycle.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1291.c54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1291.c54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

如果群上的所有连通Cayley有向图都存在正交有向环或正交有向路径,则群是强可序的。本文讨论了有限阿贝尔群是否强可序列的问题。用一种基于偏序集的方法证明了在阿贝群上Cayley有向图的连接集的基数不超过9,则该有向图要么存在正交有向路径,要么存在正交有向环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On strongly sequenceable abelian groups
A group is strongly sequenceable if every connected Cayley digraph on the group admits an orthogonal directed cycle or an orthogonal directed path. This paper deals with the problem of whether finite abelian groups are strongly sequenceable. A method based on posets is used to show that if the connection set for a Cayley digraph on an abelian group has cardinality at most nine, then the digraph admits either an orthogonal directed path or an orthogonal directed cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信