{"title":"氧化镁(MgO)","authors":"A. H. Sofi, S. Akhoon, J. Mir, M. U. D. Rather","doi":"10.4018/978-1-7998-5563-7.ch005","DOIUrl":null,"url":null,"abstract":"Bacterial contamination is an unusual menace for human well-being. Nanotechnology proposes diverse techniques to nurture new inorganic antibacterial agents. Nano-inorganic metal oxides possess an auspicious potential to diminish bacterial effluence. Magnesium oxide (MgO) is a significant inorganic oxide and has been widely employed in numerous arenas such as catalysis, ceramics, toxic waste remediation, antibacterial activity, and as an additive in paint and superconductor products by virtue of its distinctive properties. Numerous studies have shown that magnesium oxide nanostructures possess remarkable antibacterial activity. Therefore, in this direction, few synthesis methods such as hydrothermal method, sol-gel method, etc., antibacterial activity, and antibacterial mechanisms of magnesium oxide nanostructures have been incorporated in this chapter.","PeriodicalId":425581,"journal":{"name":"Applications of Nanomaterials in Agriculture, Food Science, and Medicine","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesium Oxide (MgO)\",\"authors\":\"A. H. Sofi, S. Akhoon, J. Mir, M. U. D. Rather\",\"doi\":\"10.4018/978-1-7998-5563-7.ch005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial contamination is an unusual menace for human well-being. Nanotechnology proposes diverse techniques to nurture new inorganic antibacterial agents. Nano-inorganic metal oxides possess an auspicious potential to diminish bacterial effluence. Magnesium oxide (MgO) is a significant inorganic oxide and has been widely employed in numerous arenas such as catalysis, ceramics, toxic waste remediation, antibacterial activity, and as an additive in paint and superconductor products by virtue of its distinctive properties. Numerous studies have shown that magnesium oxide nanostructures possess remarkable antibacterial activity. Therefore, in this direction, few synthesis methods such as hydrothermal method, sol-gel method, etc., antibacterial activity, and antibacterial mechanisms of magnesium oxide nanostructures have been incorporated in this chapter.\",\"PeriodicalId\":425581,\"journal\":{\"name\":\"Applications of Nanomaterials in Agriculture, Food Science, and Medicine\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Nanomaterials in Agriculture, Food Science, and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-5563-7.ch005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Nanomaterials in Agriculture, Food Science, and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-5563-7.ch005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bacterial contamination is an unusual menace for human well-being. Nanotechnology proposes diverse techniques to nurture new inorganic antibacterial agents. Nano-inorganic metal oxides possess an auspicious potential to diminish bacterial effluence. Magnesium oxide (MgO) is a significant inorganic oxide and has been widely employed in numerous arenas such as catalysis, ceramics, toxic waste remediation, antibacterial activity, and as an additive in paint and superconductor products by virtue of its distinctive properties. Numerous studies have shown that magnesium oxide nanostructures possess remarkable antibacterial activity. Therefore, in this direction, few synthesis methods such as hydrothermal method, sol-gel method, etc., antibacterial activity, and antibacterial mechanisms of magnesium oxide nanostructures have been incorporated in this chapter.