速度:目标预测

Jonathan Wonner, J. Grosjean, Antonio Capobianco, D. Bechmann
{"title":"速度:目标预测","authors":"Jonathan Wonner, J. Grosjean, Antonio Capobianco, D. Bechmann","doi":"10.1145/2044354.2044378","DOIUrl":null,"url":null,"abstract":"We present the SPEED method to predict endpoints, based on analysis of the kinetic characteristics of the pointing gesture. Our model splits the gesture into an acceleration phase and a deceleration phase to precisely detect target. The first phase allows us to identify a velocity peak that marks the beginning of the second phase. This phase is approached with a quadratic model to predict gesture endpoint. A pilot study shows that SPEED predicts a target more precisely than other existing methods, for 1D tasks without distractors.","PeriodicalId":131420,"journal":{"name":"Interaction Homme-Machine","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"SPEED: prédiction de cibles\",\"authors\":\"Jonathan Wonner, J. Grosjean, Antonio Capobianco, D. Bechmann\",\"doi\":\"10.1145/2044354.2044378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the SPEED method to predict endpoints, based on analysis of the kinetic characteristics of the pointing gesture. Our model splits the gesture into an acceleration phase and a deceleration phase to precisely detect target. The first phase allows us to identify a velocity peak that marks the beginning of the second phase. This phase is approached with a quadratic model to predict gesture endpoint. A pilot study shows that SPEED predicts a target more precisely than other existing methods, for 1D tasks without distractors.\",\"PeriodicalId\":131420,\"journal\":{\"name\":\"Interaction Homme-Machine\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interaction Homme-Machine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2044354.2044378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interaction Homme-Machine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2044354.2044378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在分析指向手势的运动特性的基础上,提出了一种预测端点的SPEED方法。我们的模型将手势分为加速阶段和减速阶段,以精确地检测目标。第一阶段允许我们确定一个速度峰值,标志着第二阶段的开始。该阶段采用二次模型来预测手势端点。一项初步研究表明,对于无干扰的一维任务,SPEED比其他现有方法更准确地预测目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPEED: prédiction de cibles
We present the SPEED method to predict endpoints, based on analysis of the kinetic characteristics of the pointing gesture. Our model splits the gesture into an acceleration phase and a deceleration phase to precisely detect target. The first phase allows us to identify a velocity peak that marks the beginning of the second phase. This phase is approached with a quadratic model to predict gesture endpoint. A pilot study shows that SPEED predicts a target more precisely than other existing methods, for 1D tasks without distractors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信