SIMD超立方体上的四叉树构建算法

O. Ibarra, M. Kim
{"title":"SIMD超立方体上的四叉树构建算法","authors":"O. Ibarra, M. Kim","doi":"10.1109/IPPS.1992.223077","DOIUrl":null,"url":null,"abstract":"Presents O(log n) time SIMD hypercube algorithms for transforming binary images to linear quadtrees and vice versa, where n is the size of the images as well as the number of hypercube nodes. The quadtree building algorithm, which generates the locational codes in preorder, is an improvement of a recently reported algorithm that runs in O(log/sup 2/n) time. The authors also give an optimal linear quadtree building algorithm which runs in T(n) time using n/sup 2//T(n) processors for log n<or=T(n)<or=n/sup 2/. The algorithm is optimal in the sense that the product of time and number of processors is asymptotically the same as the optimal sequential time which is O(n/sup 2/). For this algorithm we assume that the input binary image is divided into blocks and loaded in a shuffled row major ordered hypercube. The algorithm uses the procedures for the quadtree building algorithm developed for the case when the number of hypercube nodes is equal to the number of pixels in the binary image.<<ETX>>","PeriodicalId":340070,"journal":{"name":"Proceedings Sixth International Parallel Processing Symposium","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Quadtree building algorithms on an SIMD hypercube\",\"authors\":\"O. Ibarra, M. Kim\",\"doi\":\"10.1109/IPPS.1992.223077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents O(log n) time SIMD hypercube algorithms for transforming binary images to linear quadtrees and vice versa, where n is the size of the images as well as the number of hypercube nodes. The quadtree building algorithm, which generates the locational codes in preorder, is an improvement of a recently reported algorithm that runs in O(log/sup 2/n) time. The authors also give an optimal linear quadtree building algorithm which runs in T(n) time using n/sup 2//T(n) processors for log n<or=T(n)<or=n/sup 2/. The algorithm is optimal in the sense that the product of time and number of processors is asymptotically the same as the optimal sequential time which is O(n/sup 2/). For this algorithm we assume that the input binary image is divided into blocks and loaded in a shuffled row major ordered hypercube. The algorithm uses the procedures for the quadtree building algorithm developed for the case when the number of hypercube nodes is equal to the number of pixels in the binary image.<<ETX>>\",\"PeriodicalId\":340070,\"journal\":{\"name\":\"Proceedings Sixth International Parallel Processing Symposium\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth International Parallel Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPPS.1992.223077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1992.223077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了O(log n)时间SIMD超立方体算法,用于将二值图像转换为线性四叉树,反之亦然,其中n是图像的大小以及超立方体节点的数量。四叉树构建算法可以预先生成位置代码,是对最近报道的运行时间为O(log/sup 2/n)的算法的改进。作者还给出了一个最优的线性四叉树构建算法,该算法在T(n)时间内运行,使用n/sup 2//T(n)处理器,log n>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadtree building algorithms on an SIMD hypercube
Presents O(log n) time SIMD hypercube algorithms for transforming binary images to linear quadtrees and vice versa, where n is the size of the images as well as the number of hypercube nodes. The quadtree building algorithm, which generates the locational codes in preorder, is an improvement of a recently reported algorithm that runs in O(log/sup 2/n) time. The authors also give an optimal linear quadtree building algorithm which runs in T(n) time using n/sup 2//T(n) processors for log n>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信