DeepB2B2XSlice引擎-一个O-RAN切片选择和资源优化人工智能引擎

S. Singh, T. kumar, Ashish Pant, Rohit Mahalle
{"title":"DeepB2B2XSlice引擎-一个O-RAN切片选择和资源优化人工智能引擎","authors":"S. Singh, T. kumar, Ashish Pant, Rohit Mahalle","doi":"10.1109/ISTT56288.2022.9966553","DOIUrl":null,"url":null,"abstract":"With CSPs (communication service provider) making a lot of investment in 5G infrastructure, generating a return is bound to be a top priority. For 5G network slicing, the ability to service all types of connectivity across common network infrastructure, as well as enable operators to open their networks to B2B2X industries using analytics is key to tapping into the massive projected revenue opportunities. Optimizing Slice allocation and slice selection using machine learning, Deep Learning, and AI (Artificial Intelligence) will be key to generate revenue for CSPs for various B2B2X uses cases on basis of type of device, mobility, Latency requirement, etc. For this purpose, we are introducing O-RAN (Open-Radio Access Network) DeepB2B2XSlice Slice selection and resource optimization Engine. O-RAN DeepB2B2XSlice Engine will identify Service degradation parameter and optimize Slice resources to handle failures in future by deep learning algorithms, improve efficiency and meet SLA(Service Level Agreement) performance requirements. Engine will also perform slice selection optimization function based on SLA requirement, DeepB2B2XSlice Engine will recommend optimize Slice RAN resources parameters based on data analysis from historical data in response allocation request from operator.","PeriodicalId":389716,"journal":{"name":"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepB2B2XSlice Engine - An O-RAN Slice Selection and Resource Optimization AI Engine\",\"authors\":\"S. Singh, T. kumar, Ashish Pant, Rohit Mahalle\",\"doi\":\"10.1109/ISTT56288.2022.9966553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With CSPs (communication service provider) making a lot of investment in 5G infrastructure, generating a return is bound to be a top priority. For 5G network slicing, the ability to service all types of connectivity across common network infrastructure, as well as enable operators to open their networks to B2B2X industries using analytics is key to tapping into the massive projected revenue opportunities. Optimizing Slice allocation and slice selection using machine learning, Deep Learning, and AI (Artificial Intelligence) will be key to generate revenue for CSPs for various B2B2X uses cases on basis of type of device, mobility, Latency requirement, etc. For this purpose, we are introducing O-RAN (Open-Radio Access Network) DeepB2B2XSlice Slice selection and resource optimization Engine. O-RAN DeepB2B2XSlice Engine will identify Service degradation parameter and optimize Slice resources to handle failures in future by deep learning algorithms, improve efficiency and meet SLA(Service Level Agreement) performance requirements. Engine will also perform slice selection optimization function based on SLA requirement, DeepB2B2XSlice Engine will recommend optimize Slice RAN resources parameters based on data analysis from historical data in response allocation request from operator.\",\"PeriodicalId\":389716,\"journal\":{\"name\":\"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTT56288.2022.9966553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTT56288.2022.9966553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着csp(通信服务提供商)对5G基础设施进行大量投资,产生回报必然是重中之重。对于5G网络切片,能够在通用网络基础设施上为所有类型的连接提供服务,并使运营商能够使用分析技术向B2B2X行业开放网络,这是挖掘巨大预计收入机会的关键。使用机器学习、深度学习和AI(人工智能)优化切片分配和切片选择将是csp根据设备类型、移动性、延迟需求等各种B2B2X用例产生收入的关键。为此,我们推出O-RAN (Open-Radio Access Network) DeepB2B2XSlice切片选择和资源优化引擎。O-RAN DeepB2B2XSlice引擎将识别服务退化参数,并通过深度学习算法优化Slice资源,以处理未来的故障,提高效率并满足SLA(服务水平协议)性能要求。DeepB2B2XSlice Engine还将根据SLA要求执行切片选择优化功能,在运营商响应分配请求时,DeepB2B2XSlice Engine将根据历史数据分析,推荐最佳切片RAN资源参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepB2B2XSlice Engine - An O-RAN Slice Selection and Resource Optimization AI Engine
With CSPs (communication service provider) making a lot of investment in 5G infrastructure, generating a return is bound to be a top priority. For 5G network slicing, the ability to service all types of connectivity across common network infrastructure, as well as enable operators to open their networks to B2B2X industries using analytics is key to tapping into the massive projected revenue opportunities. Optimizing Slice allocation and slice selection using machine learning, Deep Learning, and AI (Artificial Intelligence) will be key to generate revenue for CSPs for various B2B2X uses cases on basis of type of device, mobility, Latency requirement, etc. For this purpose, we are introducing O-RAN (Open-Radio Access Network) DeepB2B2XSlice Slice selection and resource optimization Engine. O-RAN DeepB2B2XSlice Engine will identify Service degradation parameter and optimize Slice resources to handle failures in future by deep learning algorithms, improve efficiency and meet SLA(Service Level Agreement) performance requirements. Engine will also perform slice selection optimization function based on SLA requirement, DeepB2B2XSlice Engine will recommend optimize Slice RAN resources parameters based on data analysis from historical data in response allocation request from operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信