{"title":"在结理论中自然产生的np困难问题","authors":"Dale Koenig, A. Tsvietkova","doi":"10.1090/BTRAN/71","DOIUrl":null,"url":null,"abstract":"We prove that certain problems naturally arising in knot theory are NP–hard or NP–complete. These are the problems of obtaining one diagram from another one of a link in a bounded number of Reidemeister moves, determining whether a link has an unlinking or splitting number \n\n \n k\n k\n \n\n, finding a \n\n \n k\n k\n \n\n-component unlink as a sublink, and finding a \n\n \n k\n k\n \n\n-component alternating sublink.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"NP–hard problems naturally arising in knot theory\",\"authors\":\"Dale Koenig, A. Tsvietkova\",\"doi\":\"10.1090/BTRAN/71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that certain problems naturally arising in knot theory are NP–hard or NP–complete. These are the problems of obtaining one diagram from another one of a link in a bounded number of Reidemeister moves, determining whether a link has an unlinking or splitting number \\n\\n \\n k\\n k\\n \\n\\n, finding a \\n\\n \\n k\\n k\\n \\n\\n-component unlink as a sublink, and finding a \\n\\n \\n k\\n k\\n \\n\\n-component alternating sublink.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/BTRAN/71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BTRAN/71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that certain problems naturally arising in knot theory are NP–hard or NP–complete. These are the problems of obtaining one diagram from another one of a link in a bounded number of Reidemeister moves, determining whether a link has an unlinking or splitting number
k
k
, finding a
k
k
-component unlink as a sublink, and finding a
k
k
-component alternating sublink.