用神经网络将一种地球物理方法的缺失数据从另一种地球物理方法的已知数据中恢复出来,用于求解勘探地球物理反演问题

I. Isaev, I. Obornev, E. Obornev, E. Rodionov, M. Shimelevich, S. Dolenko
{"title":"用神经网络将一种地球物理方法的缺失数据从另一种地球物理方法的已知数据中恢复出来,用于求解勘探地球物理反演问题","authors":"I. Isaev, I. Obornev, E. Obornev, E. Rodionov, M. Shimelevich, S. Dolenko","doi":"10.22323/1.429.0018","DOIUrl":null,"url":null,"abstract":"This study is devoted to the inverse problems of exploration geophysics, which consist in reconstructing the spatial distribution of the properties of the medium in the Earth’s thickness from the geophysical fields measured on its surface. We consider the methods of gravimetry, magnetometry, and magnetotelluric sounding, as well as their integration, i.e. simultaneous use of data from several geophysical methods to solve the inverse problem. In their previous studies, the authors have shown that the integration of geophysical methods allows improving the quality of the solution of the inverse problem in comparison with the individual use of each of them. One of the obstacles to using the integration of geophysical methods can be the situation when for some measurement points there is no data from one of the geophysical methods used. At the same time, the data spaces of different integrated geophysical methods are interconnected, and the values of the observed quantities (fields) for one of the methods can be possibly recovered from the known values of the observed quantities of another geophysical method by constructing a preliminary adaptive mapping of one of the spaces to another. In this study, we investigate the neural network recovery of missing data of one geophysical method from the known data of another one and compare the quality of the solution of the","PeriodicalId":262901,"journal":{"name":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network recovery of missing data of one geophysical method from known data of another one in solving inverse problems of exploration geophysics\",\"authors\":\"I. Isaev, I. Obornev, E. Obornev, E. Rodionov, M. Shimelevich, S. Dolenko\",\"doi\":\"10.22323/1.429.0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is devoted to the inverse problems of exploration geophysics, which consist in reconstructing the spatial distribution of the properties of the medium in the Earth’s thickness from the geophysical fields measured on its surface. We consider the methods of gravimetry, magnetometry, and magnetotelluric sounding, as well as their integration, i.e. simultaneous use of data from several geophysical methods to solve the inverse problem. In their previous studies, the authors have shown that the integration of geophysical methods allows improving the quality of the solution of the inverse problem in comparison with the individual use of each of them. One of the obstacles to using the integration of geophysical methods can be the situation when for some measurement points there is no data from one of the geophysical methods used. At the same time, the data spaces of different integrated geophysical methods are interconnected, and the values of the observed quantities (fields) for one of the methods can be possibly recovered from the known values of the observed quantities of another geophysical method by constructing a preliminary adaptive mapping of one of the spaces to another. In this study, we investigate the neural network recovery of missing data of one geophysical method from the known data of another one and compare the quality of the solution of the\",\"PeriodicalId\":262901,\"journal\":{\"name\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.429.0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.429.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是勘探地球物理反演问题,即利用地球表面测量到的地球物理场反演地球厚度介质性质的空间分布。我们考虑了重力测量、磁测和大地电磁测深方法,以及它们的整合,即同时使用几种地球物理方法的数据来解决逆问题。在他们之前的研究中,作者已经表明,与单独使用每一种方法相比,地球物理方法的整合可以提高反问题解决的质量。使用地球物理综合方法的障碍之一可能是某些测点所使用的一种地球物理方法没有数据。同时,不同综合地球物理方法的数据空间是相互关联的,通过构建一个空间到另一个空间的初步自适应映射,可以从另一种地球物理方法的观测量的已知值中恢复出一种方法的观测量(场)值。在本研究中,我们研究了一种地球物理方法从另一种地球物理方法的已知数据中恢复缺失数据的神经网络,并比较了两种方法的解的质量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network recovery of missing data of one geophysical method from known data of another one in solving inverse problems of exploration geophysics
This study is devoted to the inverse problems of exploration geophysics, which consist in reconstructing the spatial distribution of the properties of the medium in the Earth’s thickness from the geophysical fields measured on its surface. We consider the methods of gravimetry, magnetometry, and magnetotelluric sounding, as well as their integration, i.e. simultaneous use of data from several geophysical methods to solve the inverse problem. In their previous studies, the authors have shown that the integration of geophysical methods allows improving the quality of the solution of the inverse problem in comparison with the individual use of each of them. One of the obstacles to using the integration of geophysical methods can be the situation when for some measurement points there is no data from one of the geophysical methods used. At the same time, the data spaces of different integrated geophysical methods are interconnected, and the values of the observed quantities (fields) for one of the methods can be possibly recovered from the known values of the observed quantities of another geophysical method by constructing a preliminary adaptive mapping of one of the spaces to another. In this study, we investigate the neural network recovery of missing data of one geophysical method from the known data of another one and compare the quality of the solution of the
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信