容错硬实时系统的控制理论能量管理

Ali Sharif Ahmadian, Mahdieh Hosseingholi, A. Ejlali
{"title":"容错硬实时系统的控制理论能量管理","authors":"Ali Sharif Ahmadian, Mahdieh Hosseingholi, A. Ejlali","doi":"10.1109/ICCD.2010.5647798","DOIUrl":null,"url":null,"abstract":"Recently, the tradeoff between low energy consumption and high fault-tolerance has attracted a lot of attention as a key issue in the design of real-time embedded systems. Dynamic Voltage Scaling (DVS) is known as one of the most effective low energy techniques for real-time systems. It has been observed that the use of control-theoretic methods can improve the effectiveness of DVS-enabled systems. In this paper, we have investigated reducing the energy consumption of fault-tolerant hard real-time systems using feedback control theory. Our proposed feedback-based DVS method makes the system capable of selecting the proper frequency and voltage settings in order to reduce the energy consumption while guaranteeing hard real-time requirements in the presence of unpredictable workload fluctuations and faults. In the proposed method, the available slack-time is exploited by a feedback-based DVS at runtime to reduce the energy consumption. Furthermore, some slack-time is reserved for re-execution in case of faults. Simulation results show that, as compared with traditional DVS methods without fault-tolerance, our proposed approach not only significantly reduces energy consumption, but also it satisfies hard real-time constraints in the presence of faults. The transition overhead (both time and energy), caused by changing the system supply voltage, are also taken into account in our simulation experiments.","PeriodicalId":182350,"journal":{"name":"2010 IEEE International Conference on Computer Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A control-theoretic energy management for fault-tolerant hard real-time systems\",\"authors\":\"Ali Sharif Ahmadian, Mahdieh Hosseingholi, A. Ejlali\",\"doi\":\"10.1109/ICCD.2010.5647798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the tradeoff between low energy consumption and high fault-tolerance has attracted a lot of attention as a key issue in the design of real-time embedded systems. Dynamic Voltage Scaling (DVS) is known as one of the most effective low energy techniques for real-time systems. It has been observed that the use of control-theoretic methods can improve the effectiveness of DVS-enabled systems. In this paper, we have investigated reducing the energy consumption of fault-tolerant hard real-time systems using feedback control theory. Our proposed feedback-based DVS method makes the system capable of selecting the proper frequency and voltage settings in order to reduce the energy consumption while guaranteeing hard real-time requirements in the presence of unpredictable workload fluctuations and faults. In the proposed method, the available slack-time is exploited by a feedback-based DVS at runtime to reduce the energy consumption. Furthermore, some slack-time is reserved for re-execution in case of faults. Simulation results show that, as compared with traditional DVS methods without fault-tolerance, our proposed approach not only significantly reduces energy consumption, but also it satisfies hard real-time constraints in the presence of faults. The transition overhead (both time and energy), caused by changing the system supply voltage, are also taken into account in our simulation experiments.\",\"PeriodicalId\":182350,\"journal\":{\"name\":\"2010 IEEE International Conference on Computer Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2010.5647798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2010.5647798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在低能耗和高容错性之间的权衡作为实时嵌入式系统设计中的一个关键问题,近年来受到了广泛的关注。动态电压缩放(DVS)被认为是实时系统中最有效的低能耗技术之一。已经观察到,使用控制理论方法可以提高使能dvs的系统的有效性。本文研究了利用反馈控制理论降低容错硬实时系统的能量消耗。我们提出的基于反馈的分布式交换机方法使系统能够选择适当的频率和电压设置,以减少能量消耗,同时在存在不可预测的工作负载波动和故障时保证硬实时性要求。在该方法中,在运行时利用基于反馈的分布式交换机来利用可用的空闲时间,以减少能量消耗。此外,还保留了一些空闲时间,以便在出现故障时重新执行。仿真结果表明,与传统的无容错的分布式交换机方法相比,本文提出的方法不仅显著降低了能耗,而且在存在故障的情况下满足了硬实时约束。在我们的仿真实验中也考虑了由改变系统供电电压引起的过渡开销(时间和能量)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A control-theoretic energy management for fault-tolerant hard real-time systems
Recently, the tradeoff between low energy consumption and high fault-tolerance has attracted a lot of attention as a key issue in the design of real-time embedded systems. Dynamic Voltage Scaling (DVS) is known as one of the most effective low energy techniques for real-time systems. It has been observed that the use of control-theoretic methods can improve the effectiveness of DVS-enabled systems. In this paper, we have investigated reducing the energy consumption of fault-tolerant hard real-time systems using feedback control theory. Our proposed feedback-based DVS method makes the system capable of selecting the proper frequency and voltage settings in order to reduce the energy consumption while guaranteeing hard real-time requirements in the presence of unpredictable workload fluctuations and faults. In the proposed method, the available slack-time is exploited by a feedback-based DVS at runtime to reduce the energy consumption. Furthermore, some slack-time is reserved for re-execution in case of faults. Simulation results show that, as compared with traditional DVS methods without fault-tolerance, our proposed approach not only significantly reduces energy consumption, but also it satisfies hard real-time constraints in the presence of faults. The transition overhead (both time and energy), caused by changing the system supply voltage, are also taken into account in our simulation experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信