gpu上的快速等距连接算法:设计与实现

Ran Rui, Yi-Cheng Tu
{"title":"gpu上的快速等距连接算法:设计与实现","authors":"Ran Rui, Yi-Cheng Tu","doi":"10.1145/3085504.3085521","DOIUrl":null,"url":null,"abstract":"Processing relational joins on modern GPUs has attracted much attention in the past few years. With the rapid development on the hardware and software environment in the GPU world, the existing GPU join algorithms designed for earlier architecture cannot make the most out of latest GPU products. In this paper, we report new design and implementation of join algorithms with high performance under today's GPGPU environment. This is a key component of our scientific database engine named G-SDMS. In particular, we overhaul the popular radix hash join and redesign sort-merge join algorithms on GPUs by applying a series of novel techniques to utilize the hardware capacity of latest Nvidia GPU architecture and new features of the CUDA programming framework. Our algorithms take advantage of revised hardware arrangement, larger register file and shared memory, native atomic operation, dynamic parallelism, and CUDA Streams. Experiments show that our new hash join algorithm is 2.0 to 14.6 times as efficient as existing GPU implementation, while the new sort-merge join achieves a speedup of 4.0X to 4.9X. Compared to the best CPU sort-merge join and hash join known to date, our optimized code achieves up to 10.5X and 5.5X speedup. Moreover, we extend our design to scenarios where large data tables cannot fit in the GPU memory.","PeriodicalId":431308,"journal":{"name":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Fast Equi-Join Algorithms on GPUs: Design and Implementation\",\"authors\":\"Ran Rui, Yi-Cheng Tu\",\"doi\":\"10.1145/3085504.3085521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing relational joins on modern GPUs has attracted much attention in the past few years. With the rapid development on the hardware and software environment in the GPU world, the existing GPU join algorithms designed for earlier architecture cannot make the most out of latest GPU products. In this paper, we report new design and implementation of join algorithms with high performance under today's GPGPU environment. This is a key component of our scientific database engine named G-SDMS. In particular, we overhaul the popular radix hash join and redesign sort-merge join algorithms on GPUs by applying a series of novel techniques to utilize the hardware capacity of latest Nvidia GPU architecture and new features of the CUDA programming framework. Our algorithms take advantage of revised hardware arrangement, larger register file and shared memory, native atomic operation, dynamic parallelism, and CUDA Streams. Experiments show that our new hash join algorithm is 2.0 to 14.6 times as efficient as existing GPU implementation, while the new sort-merge join achieves a speedup of 4.0X to 4.9X. Compared to the best CPU sort-merge join and hash join known to date, our optimized code achieves up to 10.5X and 5.5X speedup. Moreover, we extend our design to scenarios where large data tables cannot fit in the GPU memory.\",\"PeriodicalId\":431308,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Scientific and Statistical Database Management\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3085504.3085521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3085504.3085521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

在现代gpu上处理关系连接在过去几年中引起了人们的广泛关注。随着GPU硬件和软件环境的快速发展,现有的针对早期架构设计的GPU连接算法无法充分利用最新的GPU产品。在本文中,我们报告了在当今GPGPU环境下高性能连接算法的新设计和实现。这是我们名为G-SDMS的科学数据库引擎的关键组成部分。特别是,我们通过应用一系列新技术来利用最新Nvidia GPU架构的硬件容量和CUDA编程框架的新功能,彻底检查了流行的基数哈希连接和重新设计GPU上的排序合并连接算法。我们的算法利用了改进的硬件安排、更大的寄存器文件和共享内存、本机原子操作、动态并行性和CUDA流。实验表明,我们的新哈希连接算法的效率是现有GPU实现的2.0到14.6倍,而新的排序合并连接的速度提高了4.0到4.9倍。与迄今为止已知的最好的CPU排序合并连接和散列连接相比,我们优化的代码实现了10.5倍和5.5倍的加速。此外,我们将我们的设计扩展到GPU内存无法容纳大型数据表的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Equi-Join Algorithms on GPUs: Design and Implementation
Processing relational joins on modern GPUs has attracted much attention in the past few years. With the rapid development on the hardware and software environment in the GPU world, the existing GPU join algorithms designed for earlier architecture cannot make the most out of latest GPU products. In this paper, we report new design and implementation of join algorithms with high performance under today's GPGPU environment. This is a key component of our scientific database engine named G-SDMS. In particular, we overhaul the popular radix hash join and redesign sort-merge join algorithms on GPUs by applying a series of novel techniques to utilize the hardware capacity of latest Nvidia GPU architecture and new features of the CUDA programming framework. Our algorithms take advantage of revised hardware arrangement, larger register file and shared memory, native atomic operation, dynamic parallelism, and CUDA Streams. Experiments show that our new hash join algorithm is 2.0 to 14.6 times as efficient as existing GPU implementation, while the new sort-merge join achieves a speedup of 4.0X to 4.9X. Compared to the best CPU sort-merge join and hash join known to date, our optimized code achieves up to 10.5X and 5.5X speedup. Moreover, we extend our design to scenarios where large data tables cannot fit in the GPU memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信