Horacio Pinzón, Cinthia Audivet, J. Alexander, M. J. Torres, M. Consuegra, M. Sanjuan
{"title":"基于数据驱动统计故障检测方法的多模式操作映射与特征提取混合策略","authors":"Horacio Pinzón, Cinthia Audivet, J. Alexander, M. J. Torres, M. Consuegra, M. Sanjuan","doi":"10.1115/IMECE2018-87417","DOIUrl":null,"url":null,"abstract":"Fault detection and diagnosis schemes based on data-driven statistical modelling are highly dependent on an accurate and exhaustive feature extraction procedure to deliver a superior performance as a monitoring strategy. Otherwise conducted, a deficient feature extraction procedure leads to a monitoring structure widely deviated from normal operating conditions. If an operating state is not identified as it, an increment in false alarm rate would be evidenced whenever the process shifts towards that condition and the monitoring scheme triggers the abnormal condition warning. On the other hand, if two similar operating conditions could not be individualized i.e. to be identified as a single operating state, a lack of sensitivity for minor — yet typical — deviations would render a monitoring strategy with prominent misdetection rates.\n Although Multimode Operational Mapping requires the proper identification of a finite set of normal process states, it is a challenging task especially for large-scale systems. Its complexity derives from a broad universe of monitoring variables, highly interactuating process units integrated over very dynamic network systems, among others. This is the case of natural gas transmission infrastructure, as it deals with variable upstream production rates, diverse consumption trends from customers, internal processes constrains, merged in a stringent operating scheme.\n This paper proposes a novel strategy to address the identification and feature extraction of normal conditions on multimode operation systems. The proposed framework uses a segmentation approach based on operator’s knowledge, the Takagi-Sugeno-Kang fuzzy engine and k-means algorithm to characterize the normal operation states of the system. The results show an improvement in the performance of Principal Component Analysis during abnormal conditions detection, in addition an increase on the sensitivity of Hotelling and Q statistics.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Hybrid Strategy for Multimode Operation Mapping and Feature Extraction on Data-Driven Statistical Fault Detection Methods\",\"authors\":\"Horacio Pinzón, Cinthia Audivet, J. Alexander, M. J. Torres, M. Consuegra, M. Sanjuan\",\"doi\":\"10.1115/IMECE2018-87417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault detection and diagnosis schemes based on data-driven statistical modelling are highly dependent on an accurate and exhaustive feature extraction procedure to deliver a superior performance as a monitoring strategy. Otherwise conducted, a deficient feature extraction procedure leads to a monitoring structure widely deviated from normal operating conditions. If an operating state is not identified as it, an increment in false alarm rate would be evidenced whenever the process shifts towards that condition and the monitoring scheme triggers the abnormal condition warning. On the other hand, if two similar operating conditions could not be individualized i.e. to be identified as a single operating state, a lack of sensitivity for minor — yet typical — deviations would render a monitoring strategy with prominent misdetection rates.\\n Although Multimode Operational Mapping requires the proper identification of a finite set of normal process states, it is a challenging task especially for large-scale systems. Its complexity derives from a broad universe of monitoring variables, highly interactuating process units integrated over very dynamic network systems, among others. This is the case of natural gas transmission infrastructure, as it deals with variable upstream production rates, diverse consumption trends from customers, internal processes constrains, merged in a stringent operating scheme.\\n This paper proposes a novel strategy to address the identification and feature extraction of normal conditions on multimode operation systems. The proposed framework uses a segmentation approach based on operator’s knowledge, the Takagi-Sugeno-Kang fuzzy engine and k-means algorithm to characterize the normal operation states of the system. The results show an improvement in the performance of Principal Component Analysis during abnormal conditions detection, in addition an increase on the sensitivity of Hotelling and Q statistics.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Hybrid Strategy for Multimode Operation Mapping and Feature Extraction on Data-Driven Statistical Fault Detection Methods
Fault detection and diagnosis schemes based on data-driven statistical modelling are highly dependent on an accurate and exhaustive feature extraction procedure to deliver a superior performance as a monitoring strategy. Otherwise conducted, a deficient feature extraction procedure leads to a monitoring structure widely deviated from normal operating conditions. If an operating state is not identified as it, an increment in false alarm rate would be evidenced whenever the process shifts towards that condition and the monitoring scheme triggers the abnormal condition warning. On the other hand, if two similar operating conditions could not be individualized i.e. to be identified as a single operating state, a lack of sensitivity for minor — yet typical — deviations would render a monitoring strategy with prominent misdetection rates.
Although Multimode Operational Mapping requires the proper identification of a finite set of normal process states, it is a challenging task especially for large-scale systems. Its complexity derives from a broad universe of monitoring variables, highly interactuating process units integrated over very dynamic network systems, among others. This is the case of natural gas transmission infrastructure, as it deals with variable upstream production rates, diverse consumption trends from customers, internal processes constrains, merged in a stringent operating scheme.
This paper proposes a novel strategy to address the identification and feature extraction of normal conditions on multimode operation systems. The proposed framework uses a segmentation approach based on operator’s knowledge, the Takagi-Sugeno-Kang fuzzy engine and k-means algorithm to characterize the normal operation states of the system. The results show an improvement in the performance of Principal Component Analysis during abnormal conditions detection, in addition an increase on the sensitivity of Hotelling and Q statistics.