具有多个加气站的机器人持久存在的系统设计和资源分析

Hyorin Park, J. R. Morrison
{"title":"具有多个加气站的机器人持久存在的系统设计和资源分析","authors":"Hyorin Park, J. R. Morrison","doi":"10.1109/ICUAS.2019.8797808","DOIUrl":null,"url":null,"abstract":"Despite the capabilities of unmanned aerial vehicles (UAVs), it is not possible to conduct long-term missions with a just few UAVs due to fuel restrictions. This requires a system that includes multiple UAVs and automated recharging stations for an automatic and persistent service. In order to construct a persistent presence system such as local surveillance and monitoring, it is important to determine the design of the mission and the number of resources required. In this paper, a system consisting of multiple target areas and multiple stations is considered. There are two types of stations: refueling and main stations for maintenance. UAVs can travel further using the refueling stations. A decision-free Petri net model for persistency is developed for cyclic paths including multiple immobile targets and stations. From the Petri net model, we derive a closed-form function for the minimum number of resources in the persistent system. A mathematical model that has the objective function derived from the Petri net is developed. To resolve the computational issue, a genetic algorithm (GA) is used to solve the problem. As the result, the minimum number of resources required and the mission path are derived.","PeriodicalId":426616,"journal":{"name":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"System design and resource analysis for persistent robotic presence with multiple refueling stations\",\"authors\":\"Hyorin Park, J. R. Morrison\",\"doi\":\"10.1109/ICUAS.2019.8797808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the capabilities of unmanned aerial vehicles (UAVs), it is not possible to conduct long-term missions with a just few UAVs due to fuel restrictions. This requires a system that includes multiple UAVs and automated recharging stations for an automatic and persistent service. In order to construct a persistent presence system such as local surveillance and monitoring, it is important to determine the design of the mission and the number of resources required. In this paper, a system consisting of multiple target areas and multiple stations is considered. There are two types of stations: refueling and main stations for maintenance. UAVs can travel further using the refueling stations. A decision-free Petri net model for persistency is developed for cyclic paths including multiple immobile targets and stations. From the Petri net model, we derive a closed-form function for the minimum number of resources in the persistent system. A mathematical model that has the objective function derived from the Petri net is developed. To resolve the computational issue, a genetic algorithm (GA) is used to solve the problem. As the result, the minimum number of resources required and the mission path are derived.\",\"PeriodicalId\":426616,\"journal\":{\"name\":\"2019 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS.2019.8797808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2019.8797808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

尽管无人机(uav)有能力,但由于燃料限制,仅用几架无人机执行长期任务是不可能的。这需要一个包括多架无人机和自动充电站的系统,以实现自动和持久的服务。为了建立一个持久存在的系统,例如当地的监视和监测,必须确定特派团的设计和所需资源的数量。本文考虑了一个由多个目标区域和多个站点组成的系统。有两种类型的站:加油站和维护主站。无人机可以使用燃料补给站飞得更远。针对包含多个固定目标和站点的循环路径,建立了一种无决策Petri网模型。从Petri网模型出发,导出了持久系统中最小资源数的封闭函数。建立了一个由Petri网导出目标函数的数学模型。为了解决计算问题,采用遗传算法(GA)进行求解。从而推导出所需资源的最小数量和任务路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System design and resource analysis for persistent robotic presence with multiple refueling stations
Despite the capabilities of unmanned aerial vehicles (UAVs), it is not possible to conduct long-term missions with a just few UAVs due to fuel restrictions. This requires a system that includes multiple UAVs and automated recharging stations for an automatic and persistent service. In order to construct a persistent presence system such as local surveillance and monitoring, it is important to determine the design of the mission and the number of resources required. In this paper, a system consisting of multiple target areas and multiple stations is considered. There are two types of stations: refueling and main stations for maintenance. UAVs can travel further using the refueling stations. A decision-free Petri net model for persistency is developed for cyclic paths including multiple immobile targets and stations. From the Petri net model, we derive a closed-form function for the minimum number of resources in the persistent system. A mathematical model that has the objective function derived from the Petri net is developed. To resolve the computational issue, a genetic algorithm (GA) is used to solve the problem. As the result, the minimum number of resources required and the mission path are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信