{"title":"数值再现性:可行性问题","authors":"P. Langlois, R. Nheili, C. Denis","doi":"10.1109/NTMS.2015.7266509","DOIUrl":null,"url":null,"abstract":"Floating-point arithmetic may introduce failures of the numerical reproducibility between a priori similar sequential and parallel executions of HPC simulation. We present how to apply some existing techniques to part of hydrodynamic finite element simulations. We analyze how easy these techniques allow us to recover its numerical reproducibility.","PeriodicalId":115020,"journal":{"name":"2015 7th International Conference on New Technologies, Mobility and Security (NTMS)","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Numerical reproducibility: Feasibility issues\",\"authors\":\"P. Langlois, R. Nheili, C. Denis\",\"doi\":\"10.1109/NTMS.2015.7266509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floating-point arithmetic may introduce failures of the numerical reproducibility between a priori similar sequential and parallel executions of HPC simulation. We present how to apply some existing techniques to part of hydrodynamic finite element simulations. We analyze how easy these techniques allow us to recover its numerical reproducibility.\",\"PeriodicalId\":115020,\"journal\":{\"name\":\"2015 7th International Conference on New Technologies, Mobility and Security (NTMS)\",\"volume\":\"363 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on New Technologies, Mobility and Security (NTMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NTMS.2015.7266509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on New Technologies, Mobility and Security (NTMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTMS.2015.7266509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Floating-point arithmetic may introduce failures of the numerical reproducibility between a priori similar sequential and parallel executions of HPC simulation. We present how to apply some existing techniques to part of hydrodynamic finite element simulations. We analyze how easy these techniques allow us to recover its numerical reproducibility.