职业失衡,Redux

Byron C. Wallace, Kevin Small, C. Brodley, T. Trikalinos
{"title":"职业失衡,Redux","authors":"Byron C. Wallace, Kevin Small, C. Brodley, T. Trikalinos","doi":"10.1109/ICDM.2011.33","DOIUrl":null,"url":null,"abstract":"Class imbalance (i.e., scenarios in which classes are unequally represented in the training data) occurs in many real-world learning tasks. Yet despite its practical importance, there is no established theory of class imbalance, and existing methods for handling it are therefore not well motivated. In this work, we approach the problem of imbalance from a probabilistic perspective, and from this vantage identify dataset characteristics (such as dimensionality, sparsity, etc.) that exacerbate the problem. Motivated by this theory, we advocate the approach of bagging an ensemble of classifiers induced over balanced bootstrap training samples, arguing that this strategy will often succeed where others fail. Thus in addition to providing a theoretical understanding of class imbalance, corroborated by our experiments on both simulated and real datasets, we provide practical guidance for the data mining practitioner working with imbalanced data.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"193","resultStr":"{\"title\":\"Class Imbalance, Redux\",\"authors\":\"Byron C. Wallace, Kevin Small, C. Brodley, T. Trikalinos\",\"doi\":\"10.1109/ICDM.2011.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class imbalance (i.e., scenarios in which classes are unequally represented in the training data) occurs in many real-world learning tasks. Yet despite its practical importance, there is no established theory of class imbalance, and existing methods for handling it are therefore not well motivated. In this work, we approach the problem of imbalance from a probabilistic perspective, and from this vantage identify dataset characteristics (such as dimensionality, sparsity, etc.) that exacerbate the problem. Motivated by this theory, we advocate the approach of bagging an ensemble of classifiers induced over balanced bootstrap training samples, arguing that this strategy will often succeed where others fail. Thus in addition to providing a theoretical understanding of class imbalance, corroborated by our experiments on both simulated and real datasets, we provide practical guidance for the data mining practitioner working with imbalanced data.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"193\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 193

摘要

在现实世界的许多学习任务中都会出现类不平衡(即,在训练数据中,类的表现是不平等的)。然而,尽管阶级不平衡具有重要的现实意义,但目前还没有建立阶级不平衡的理论,因此现有的处理方法也没有很好的动力。在这项工作中,我们从概率的角度来处理不平衡问题,并从这个优势来识别加剧问题的数据集特征(如维数、稀疏度等)。在这一理论的激励下,我们提倡在平衡的自举训练样本上归纳分类器集合的方法,认为这种策略通常会在其他策略失败的情况下成功。因此,除了提供对类不平衡的理论理解(通过我们在模拟和真实数据集上的实验得到证实)之外,我们还为处理不平衡数据的数据挖掘从业者提供了实践指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Class Imbalance, Redux
Class imbalance (i.e., scenarios in which classes are unequally represented in the training data) occurs in many real-world learning tasks. Yet despite its practical importance, there is no established theory of class imbalance, and existing methods for handling it are therefore not well motivated. In this work, we approach the problem of imbalance from a probabilistic perspective, and from this vantage identify dataset characteristics (such as dimensionality, sparsity, etc.) that exacerbate the problem. Motivated by this theory, we advocate the approach of bagging an ensemble of classifiers induced over balanced bootstrap training samples, arguing that this strategy will often succeed where others fail. Thus in addition to providing a theoretical understanding of class imbalance, corroborated by our experiments on both simulated and real datasets, we provide practical guidance for the data mining practitioner working with imbalanced data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信