基于Spearman相关分析(MD-SCA)的非线性数据的多维投影

Muhammad Saddam Khokhar, Keyang Cheng, Misbah Ayoub, Zakria, Lubamba Kasangu Eric
{"title":"基于Spearman相关分析(MD-SCA)的非线性数据的多维投影","authors":"Muhammad Saddam Khokhar, Keyang Cheng, Misbah Ayoub, Zakria, Lubamba Kasangu Eric","doi":"10.1109/ICICT47744.2019.9001973","DOIUrl":null,"url":null,"abstract":"This paper introduces an algorithm of multidimensional informative projection or view of multiple variable and more than two random variables via Spearman correlation analysis (SCA). The proposed algorithm is an extension of Spearman correlation analysis to extract linear or nonlinear information of projections through pairwise correlation analysis. These multi-dimensional informative projections used as common patterns in pattern recognition application. The proposed algorithm extends SCA through linear algebraic solution for the optimization problem, the problem of dual representation of high multi-dimensional data, and structural dilemma issues along with deep learning model. Additionally, the proposed method decreases the quadratic algorithm complexity among linear and non-linear data through Spearman rank ability. The demonstration of proposed approached performs on two-bench mark data set: Face96 and Yale Face Database.","PeriodicalId":351104,"journal":{"name":"2019 8th International Conference on Information and Communication Technologies (ICICT)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-Dimension Projection for Non-Linear Data Via Spearman Correlation Analysis (MD-SCA)\",\"authors\":\"Muhammad Saddam Khokhar, Keyang Cheng, Misbah Ayoub, Zakria, Lubamba Kasangu Eric\",\"doi\":\"10.1109/ICICT47744.2019.9001973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an algorithm of multidimensional informative projection or view of multiple variable and more than two random variables via Spearman correlation analysis (SCA). The proposed algorithm is an extension of Spearman correlation analysis to extract linear or nonlinear information of projections through pairwise correlation analysis. These multi-dimensional informative projections used as common patterns in pattern recognition application. The proposed algorithm extends SCA through linear algebraic solution for the optimization problem, the problem of dual representation of high multi-dimensional data, and structural dilemma issues along with deep learning model. Additionally, the proposed method decreases the quadratic algorithm complexity among linear and non-linear data through Spearman rank ability. The demonstration of proposed approached performs on two-bench mark data set: Face96 and Yale Face Database.\",\"PeriodicalId\":351104,\"journal\":{\"name\":\"2019 8th International Conference on Information and Communication Technologies (ICICT)\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Information and Communication Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT47744.2019.9001973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Information and Communication Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT47744.2019.9001973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了一种基于Spearman相关分析(SCA)的多变量和两个以上随机变量的多维信息投影或视图算法。该算法是对Spearman相关分析的扩展,通过两两相关分析提取投影的线性或非线性信息。这些多维信息投影在模式识别应用中作为通用模式。该算法通过线性代数解决优化问题、高维数据的对偶表示问题和结构困境问题以及深度学习模型对SCA进行了扩展。此外,该方法通过Spearman秩能力降低了线性和非线性数据之间的二次算法复杂度。该方法在Face96和耶鲁人脸数据库两个基准数据集上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Dimension Projection for Non-Linear Data Via Spearman Correlation Analysis (MD-SCA)
This paper introduces an algorithm of multidimensional informative projection or view of multiple variable and more than two random variables via Spearman correlation analysis (SCA). The proposed algorithm is an extension of Spearman correlation analysis to extract linear or nonlinear information of projections through pairwise correlation analysis. These multi-dimensional informative projections used as common patterns in pattern recognition application. The proposed algorithm extends SCA through linear algebraic solution for the optimization problem, the problem of dual representation of high multi-dimensional data, and structural dilemma issues along with deep learning model. Additionally, the proposed method decreases the quadratic algorithm complexity among linear and non-linear data through Spearman rank ability. The demonstration of proposed approached performs on two-bench mark data set: Face96 and Yale Face Database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信