用于X和γ辐射探测器的CsPbBr3钙钛矿单晶

V. Skliarchuk, P. Fochuk, O. Kopach, A. Bolotnikov, R. James
{"title":"用于X和γ辐射探测器的CsPbBr3钙钛矿单晶","authors":"V. Skliarchuk, P. Fochuk, O. Kopach, A. Bolotnikov, R. James","doi":"10.1117/12.2676107","DOIUrl":null,"url":null,"abstract":"Methods were developed for the synthesis and growth of the inorganic perovskite CsPbBr3, which can be used for detection of optical, x-ray, and γ-radiation. The growth of single crystals of these compounds was carried out by the Bridgman method in quartz ampoules using zone-refined starting materials. The electro-physical properties of the lead cesium tribromide CsPbBr3 were studied. Two types of structures with a Cr/CsPbBr3/Ni rectifying barrier and Ni/CsPbBr3/Ni ohmic contacts were created. The resistivity of the semiconductor material (ρ≈7×109 Ohm•cm) and the activation energy of the dark conductivity (▵E≈0.8 eV) were determined. From the measurements of the optical transmission spectra, the energy gap of CsPbBr3 at 300 K was found to be Еg = 2.27 eV. The temperature dependence of the forbidden gap (Eg(T) = 2.4 - 4*10-4 T, eV) was also determined. A significant increase in photosensitivity for the Cr/CsPbBr3/Ni structure was observed at elevated temperatures. The Cr/CsPbBr3/Ni structures were shown to be sensitive to γ radiation. The FWHM of the energy resolution for an 241Am source was measured to be 15.8 keV.","PeriodicalId":434863,"journal":{"name":"Optical Engineering + Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CsPbBr3 perovskite single crystals for X- and γ-radiation detectors\",\"authors\":\"V. Skliarchuk, P. Fochuk, O. Kopach, A. Bolotnikov, R. James\",\"doi\":\"10.1117/12.2676107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods were developed for the synthesis and growth of the inorganic perovskite CsPbBr3, which can be used for detection of optical, x-ray, and γ-radiation. The growth of single crystals of these compounds was carried out by the Bridgman method in quartz ampoules using zone-refined starting materials. The electro-physical properties of the lead cesium tribromide CsPbBr3 were studied. Two types of structures with a Cr/CsPbBr3/Ni rectifying barrier and Ni/CsPbBr3/Ni ohmic contacts were created. The resistivity of the semiconductor material (ρ≈7×109 Ohm•cm) and the activation energy of the dark conductivity (▵E≈0.8 eV) were determined. From the measurements of the optical transmission spectra, the energy gap of CsPbBr3 at 300 K was found to be Еg = 2.27 eV. The temperature dependence of the forbidden gap (Eg(T) = 2.4 - 4*10-4 T, eV) was also determined. A significant increase in photosensitivity for the Cr/CsPbBr3/Ni structure was observed at elevated temperatures. The Cr/CsPbBr3/Ni structures were shown to be sensitive to γ radiation. The FWHM of the energy resolution for an 241Am source was measured to be 15.8 keV.\",\"PeriodicalId\":434863,\"journal\":{\"name\":\"Optical Engineering + Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Engineering + Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2676107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2676107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了无机钙钛矿CsPbBr3的合成和生长方法,该材料可用于光学、x射线和γ辐射的检测。用Bridgman法在石英安瓿中以区域精制起始材料生长了这些化合物的单晶。研究了三溴化铯铅CsPbBr3的电物理性质。建立了两种具有Cr/CsPbBr3/Ni整流势垒和Ni/CsPbBr3/Ni欧姆触点的结构。测定了半导体材料的电阻率(ρ≈7×109 Ohm•cm)和暗电导率的活化能(E≈0.8 eV)。通过透射光谱测量,发现CsPbBr3在300 K时的能隙为Еg = 2.27 eV。测定了禁隙的温度依赖性(Eg(T) = 2.4 -4 *10-4 T, eV)。在高温下,Cr/CsPbBr3/Ni结构的光敏性显著提高。Cr/CsPbBr3/Ni结构对γ辐射敏感。241Am源能量分辨率的FWHM测量值为15.8 keV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CsPbBr3 perovskite single crystals for X- and γ-radiation detectors
Methods were developed for the synthesis and growth of the inorganic perovskite CsPbBr3, which can be used for detection of optical, x-ray, and γ-radiation. The growth of single crystals of these compounds was carried out by the Bridgman method in quartz ampoules using zone-refined starting materials. The electro-physical properties of the lead cesium tribromide CsPbBr3 were studied. Two types of structures with a Cr/CsPbBr3/Ni rectifying barrier and Ni/CsPbBr3/Ni ohmic contacts were created. The resistivity of the semiconductor material (ρ≈7×109 Ohm•cm) and the activation energy of the dark conductivity (▵E≈0.8 eV) were determined. From the measurements of the optical transmission spectra, the energy gap of CsPbBr3 at 300 K was found to be Еg = 2.27 eV. The temperature dependence of the forbidden gap (Eg(T) = 2.4 - 4*10-4 T, eV) was also determined. A significant increase in photosensitivity for the Cr/CsPbBr3/Ni structure was observed at elevated temperatures. The Cr/CsPbBr3/Ni structures were shown to be sensitive to γ radiation. The FWHM of the energy resolution for an 241Am source was measured to be 15.8 keV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信