基于资源感知的异构边缘设备DNN分区研究

Muhammad Zawish, L. Abraham, K. Dev, Steven Davy
{"title":"基于资源感知的异构边缘设备DNN分区研究","authors":"Muhammad Zawish, L. Abraham, K. Dev, Steven Davy","doi":"10.1109/GLOBECOM48099.2022.10000839","DOIUrl":null,"url":null,"abstract":"Collaborative deep neural network (DNN) inference over edge and cloud is emerging as an effective approach for enabling several Internet of Things (IoT) applications. Edge devices are mainly resource-constrained and hence can not afford the computational complexity manifested by DNNs. Thereby, researchers have resorted to a collaborative computing approach, where a DNN is partitioned between edge and cloud. Recent art on DNN partitioning has either focused on bandwidth-specific partitioning or relied on offline benchmarking of DNN layers. However, edge devices are inherently heterogeneous and possess inconsistent levels and types of resources. Therefore, in this work, we propose a resource-aware partitioning of DNNs for accelerating collaborative inference over edge-cloud. The proposed approach provides the flexibility of partitioning a DNN with respect to the available nature and scale of resources for a certain edge device. Unlike state-of-the-art, we exploit different types of DNN complexities for partitioning them on heterogeneous edge devices. For example, in a bandwidth-constrained scenario, our approach gained 40% efficiency as compared to the offline benchmarking approach. Therefore, given the different nature of edge devices' computational, storage, and energy requirements, this approach provides a suitable configuration for edge-cloud synergetic inference.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Resource-aware DNN Partitioning for Edge Devices with Heterogeneous Resources\",\"authors\":\"Muhammad Zawish, L. Abraham, K. Dev, Steven Davy\",\"doi\":\"10.1109/GLOBECOM48099.2022.10000839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative deep neural network (DNN) inference over edge and cloud is emerging as an effective approach for enabling several Internet of Things (IoT) applications. Edge devices are mainly resource-constrained and hence can not afford the computational complexity manifested by DNNs. Thereby, researchers have resorted to a collaborative computing approach, where a DNN is partitioned between edge and cloud. Recent art on DNN partitioning has either focused on bandwidth-specific partitioning or relied on offline benchmarking of DNN layers. However, edge devices are inherently heterogeneous and possess inconsistent levels and types of resources. Therefore, in this work, we propose a resource-aware partitioning of DNNs for accelerating collaborative inference over edge-cloud. The proposed approach provides the flexibility of partitioning a DNN with respect to the available nature and scale of resources for a certain edge device. Unlike state-of-the-art, we exploit different types of DNN complexities for partitioning them on heterogeneous edge devices. For example, in a bandwidth-constrained scenario, our approach gained 40% efficiency as compared to the offline benchmarking approach. Therefore, given the different nature of edge devices' computational, storage, and energy requirements, this approach provides a suitable configuration for edge-cloud synergetic inference.\",\"PeriodicalId\":313199,\"journal\":{\"name\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM48099.2022.10000839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10000839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

边缘和云上的协作深度神经网络(DNN)推理正在成为实现多种物联网(IoT)应用的有效方法。边缘设备主要是资源受限的,因此无法承受dnn所表现出的计算复杂性。因此,研究人员采用了一种协作计算方法,将深度神经网络划分为边缘和云。最近关于深度神经网络分区的研究要么集中在带宽特定的分区上,要么依赖于深度神经网络层的离线基准测试。然而,边缘设备本质上是异构的,并且拥有不一致的级别和类型的资源。因此,在这项工作中,我们提出了一种资源感知的dnn划分方法,以加速边缘云上的协同推理。所提出的方法提供了划分DNN的灵活性,相对于可用的性质和规模的资源为某一边缘设备。与最先进的技术不同,我们利用不同类型的DNN复杂性在异构边缘设备上对它们进行分区。例如,在带宽受限的场景中,与离线基准测试方法相比,我们的方法获得了40%的效率。因此,考虑到边缘设备的计算、存储和能量需求的不同性质,该方法为边缘云协同推理提供了合适的配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Resource-aware DNN Partitioning for Edge Devices with Heterogeneous Resources
Collaborative deep neural network (DNN) inference over edge and cloud is emerging as an effective approach for enabling several Internet of Things (IoT) applications. Edge devices are mainly resource-constrained and hence can not afford the computational complexity manifested by DNNs. Thereby, researchers have resorted to a collaborative computing approach, where a DNN is partitioned between edge and cloud. Recent art on DNN partitioning has either focused on bandwidth-specific partitioning or relied on offline benchmarking of DNN layers. However, edge devices are inherently heterogeneous and possess inconsistent levels and types of resources. Therefore, in this work, we propose a resource-aware partitioning of DNNs for accelerating collaborative inference over edge-cloud. The proposed approach provides the flexibility of partitioning a DNN with respect to the available nature and scale of resources for a certain edge device. Unlike state-of-the-art, we exploit different types of DNN complexities for partitioning them on heterogeneous edge devices. For example, in a bandwidth-constrained scenario, our approach gained 40% efficiency as compared to the offline benchmarking approach. Therefore, given the different nature of edge devices' computational, storage, and energy requirements, this approach provides a suitable configuration for edge-cloud synergetic inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信