{"title":"高传动比同轴磁力齿轮的性能潜力","authors":"Ho Yin David Wong, J. Bird","doi":"10.1109/INTERMAG42984.2021.9579919","DOIUrl":null,"url":null,"abstract":"It has been traditionally thought that a coaxial magnetic gear (MG) can only have a high volumetric torque density at a low gear ratio. This paper points out that by using the right sized radius and utilizing judicious radial parameter sweep analysis a high torque density can be created that also operates with a high gear ratio. An example design is presented that has a 33:1 gear ratio and a 3-D finite element analysis calculated torque density in excess of 300 Nm/L. The paper also provides a direct torque density comparison of the Halbach rotor MG relative to the surface mounted permanent magnet MG.","PeriodicalId":129905,"journal":{"name":"2021 IEEE International Magnetic Conference (INTERMAG)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance Potential of High Gear Ratio Coaxial Magnetic Gears\",\"authors\":\"Ho Yin David Wong, J. Bird\",\"doi\":\"10.1109/INTERMAG42984.2021.9579919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been traditionally thought that a coaxial magnetic gear (MG) can only have a high volumetric torque density at a low gear ratio. This paper points out that by using the right sized radius and utilizing judicious radial parameter sweep analysis a high torque density can be created that also operates with a high gear ratio. An example design is presented that has a 33:1 gear ratio and a 3-D finite element analysis calculated torque density in excess of 300 Nm/L. The paper also provides a direct torque density comparison of the Halbach rotor MG relative to the surface mounted permanent magnet MG.\",\"PeriodicalId\":129905,\"journal\":{\"name\":\"2021 IEEE International Magnetic Conference (INTERMAG)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Magnetic Conference (INTERMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTERMAG42984.2021.9579919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Magnetic Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERMAG42984.2021.9579919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Potential of High Gear Ratio Coaxial Magnetic Gears
It has been traditionally thought that a coaxial magnetic gear (MG) can only have a high volumetric torque density at a low gear ratio. This paper points out that by using the right sized radius and utilizing judicious radial parameter sweep analysis a high torque density can be created that also operates with a high gear ratio. An example design is presented that has a 33:1 gear ratio and a 3-D finite element analysis calculated torque density in excess of 300 Nm/L. The paper also provides a direct torque density comparison of the Halbach rotor MG relative to the surface mounted permanent magnet MG.