{"title":"符号-数值混合计算中的数值优化","authors":"L. Zhi","doi":"10.1145/1277500.1277507","DOIUrl":null,"url":null,"abstract":"Approximate symbolic computation problems can be formulated as constrained or unconstrained optimization problems, for example: GCD [3,8,12,13,23], factorization [5,10], and polynomial system solving [2,25,29]. We exploit the special structure of these optimization problems, and show how to design efficient and stable hybrid symbolic-numeric algorithms based on Gauss-Newton iteration, structured total least squares (STLS), semide finite programming and other numeric optimization methods.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical optimization in hybrid symbolic-numeric computation\",\"authors\":\"L. Zhi\",\"doi\":\"10.1145/1277500.1277507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate symbolic computation problems can be formulated as constrained or unconstrained optimization problems, for example: GCD [3,8,12,13,23], factorization [5,10], and polynomial system solving [2,25,29]. We exploit the special structure of these optimization problems, and show how to design efficient and stable hybrid symbolic-numeric algorithms based on Gauss-Newton iteration, structured total least squares (STLS), semide finite programming and other numeric optimization methods.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical optimization in hybrid symbolic-numeric computation
Approximate symbolic computation problems can be formulated as constrained or unconstrained optimization problems, for example: GCD [3,8,12,13,23], factorization [5,10], and polynomial system solving [2,25,29]. We exploit the special structure of these optimization problems, and show how to design efficient and stable hybrid symbolic-numeric algorithms based on Gauss-Newton iteration, structured total least squares (STLS), semide finite programming and other numeric optimization methods.