符号-数值混合计算中的数值优化

L. Zhi
{"title":"符号-数值混合计算中的数值优化","authors":"L. Zhi","doi":"10.1145/1277500.1277507","DOIUrl":null,"url":null,"abstract":"Approximate symbolic computation problems can be formulated as constrained or unconstrained optimization problems, for example: GCD [3,8,12,13,23], factorization [5,10], and polynomial system solving [2,25,29]. We exploit the special structure of these optimization problems, and show how to design efficient and stable hybrid symbolic-numeric algorithms based on Gauss-Newton iteration, structured total least squares (STLS), semide finite programming and other numeric optimization methods.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Numerical optimization in hybrid symbolic-numeric computation\",\"authors\":\"L. Zhi\",\"doi\":\"10.1145/1277500.1277507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate symbolic computation problems can be formulated as constrained or unconstrained optimization problems, for example: GCD [3,8,12,13,23], factorization [5,10], and polynomial system solving [2,25,29]. We exploit the special structure of these optimization problems, and show how to design efficient and stable hybrid symbolic-numeric algorithms based on Gauss-Newton iteration, structured total least squares (STLS), semide finite programming and other numeric optimization methods.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近似符号计算问题可以表述为有约束或无约束优化问题,例如:GCD[3,8,12,13,23],因数分解[5,10]和多项式系统求解[2,25,29]。我们利用这些优化问题的特殊结构,展示了如何基于高斯-牛顿迭代、结构化总最小二乘(STLS)、半有限规划和其他数值优化方法设计高效稳定的符号-数值混合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical optimization in hybrid symbolic-numeric computation
Approximate symbolic computation problems can be formulated as constrained or unconstrained optimization problems, for example: GCD [3,8,12,13,23], factorization [5,10], and polynomial system solving [2,25,29]. We exploit the special structure of these optimization problems, and show how to design efficient and stable hybrid symbolic-numeric algorithms based on Gauss-Newton iteration, structured total least squares (STLS), semide finite programming and other numeric optimization methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信