Masoud Shirzadeh, M. Shojaeefard, A. Amirkhani, H. Behroozi
{"title":"类车机器人的自适应模糊非线性滑模控制器","authors":"Masoud Shirzadeh, M. Shojaeefard, A. Amirkhani, H. Behroozi","doi":"10.1109/KBEI.2019.8734995","DOIUrl":null,"url":null,"abstract":"In this paper, a nonlinear controller, which can be updated online by means of fuzzy logic, has been proposed for tracking the trajectory of a car-like robot. The advantage of this control scheme is that it eliminates the effects of model disturbances and uncertainties, which cannot be avoided; and especially when we consider the difficult task of determining the exact kinematic and dynamic models of car-like robots. The proposed approach comprises a robust nonlinear section that uses the sliding mode control and a fuzzy section that can update, online, parameters of the nonlinear controller. The stability and the error convergence of the closed-loop system are verified through the Lyapunov criterion. A fuzzy system is designed to deal with the chattering of the car-like robot. In addition to the gains of the sign function, there are also constant parameters in our controller, which are determined by using a genetic algorithm. To show the effectiveness of the proposed design, simulations are performed by considering un-ideal effects such as uncertainties and external disturbances.","PeriodicalId":339990,"journal":{"name":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Adaptive fuzzy nonlinear sliding-mode controller for a car-like robot\",\"authors\":\"Masoud Shirzadeh, M. Shojaeefard, A. Amirkhani, H. Behroozi\",\"doi\":\"10.1109/KBEI.2019.8734995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a nonlinear controller, which can be updated online by means of fuzzy logic, has been proposed for tracking the trajectory of a car-like robot. The advantage of this control scheme is that it eliminates the effects of model disturbances and uncertainties, which cannot be avoided; and especially when we consider the difficult task of determining the exact kinematic and dynamic models of car-like robots. The proposed approach comprises a robust nonlinear section that uses the sliding mode control and a fuzzy section that can update, online, parameters of the nonlinear controller. The stability and the error convergence of the closed-loop system are verified through the Lyapunov criterion. A fuzzy system is designed to deal with the chattering of the car-like robot. In addition to the gains of the sign function, there are also constant parameters in our controller, which are determined by using a genetic algorithm. To show the effectiveness of the proposed design, simulations are performed by considering un-ideal effects such as uncertainties and external disturbances.\",\"PeriodicalId\":339990,\"journal\":{\"name\":\"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KBEI.2019.8734995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBEI.2019.8734995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive fuzzy nonlinear sliding-mode controller for a car-like robot
In this paper, a nonlinear controller, which can be updated online by means of fuzzy logic, has been proposed for tracking the trajectory of a car-like robot. The advantage of this control scheme is that it eliminates the effects of model disturbances and uncertainties, which cannot be avoided; and especially when we consider the difficult task of determining the exact kinematic and dynamic models of car-like robots. The proposed approach comprises a robust nonlinear section that uses the sliding mode control and a fuzzy section that can update, online, parameters of the nonlinear controller. The stability and the error convergence of the closed-loop system are verified through the Lyapunov criterion. A fuzzy system is designed to deal with the chattering of the car-like robot. In addition to the gains of the sign function, there are also constant parameters in our controller, which are determined by using a genetic algorithm. To show the effectiveness of the proposed design, simulations are performed by considering un-ideal effects such as uncertainties and external disturbances.