{"title":"基于脑电信号和面部行为的多模态门控信息融合","authors":"Soheil Rayatdoost, D. Rudrauf, M. Soleymani","doi":"10.1145/3382507.3418867","DOIUrl":null,"url":null,"abstract":"Emotions associated with neural and behavioral responses are detectable through scalp electroencephalogram (EEG) signals and measures of facial expressions. We propose a multimodal deep representation learning approach for emotion recognition from EEG and facial expression signals. The proposed method involves the joint learning of a unimodal representation aligned with the other modality through cosine similarity and a gated fusion for modality fusion. We evaluated our method on two databases: DAI-EF and MAHNOB-HCI. The results show that our deep representation is able to learn mutual and complementary information between EEG signals and face video, captured by action units, head and eye movements from face videos, in a manner that generalizes across databases. It is able to outperform similar fusion methods for the task at hand.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multimodal Gated Information Fusion for Emotion Recognition from EEG Signals and Facial Behaviors\",\"authors\":\"Soheil Rayatdoost, D. Rudrauf, M. Soleymani\",\"doi\":\"10.1145/3382507.3418867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotions associated with neural and behavioral responses are detectable through scalp electroencephalogram (EEG) signals and measures of facial expressions. We propose a multimodal deep representation learning approach for emotion recognition from EEG and facial expression signals. The proposed method involves the joint learning of a unimodal representation aligned with the other modality through cosine similarity and a gated fusion for modality fusion. We evaluated our method on two databases: DAI-EF and MAHNOB-HCI. The results show that our deep representation is able to learn mutual and complementary information between EEG signals and face video, captured by action units, head and eye movements from face videos, in a manner that generalizes across databases. It is able to outperform similar fusion methods for the task at hand.\",\"PeriodicalId\":402394,\"journal\":{\"name\":\"Proceedings of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3382507.3418867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3418867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multimodal Gated Information Fusion for Emotion Recognition from EEG Signals and Facial Behaviors
Emotions associated with neural and behavioral responses are detectable through scalp electroencephalogram (EEG) signals and measures of facial expressions. We propose a multimodal deep representation learning approach for emotion recognition from EEG and facial expression signals. The proposed method involves the joint learning of a unimodal representation aligned with the other modality through cosine similarity and a gated fusion for modality fusion. We evaluated our method on two databases: DAI-EF and MAHNOB-HCI. The results show that our deep representation is able to learn mutual and complementary information between EEG signals and face video, captured by action units, head and eye movements from face videos, in a manner that generalizes across databases. It is able to outperform similar fusion methods for the task at hand.