{"title":"利用易碎位巧合改进虹膜识别","authors":"K. Hollingsworth, K. W. Bowyer, P. Flynn","doi":"10.1109/BTAS.2009.5339036","DOIUrl":null,"url":null,"abstract":"The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are of equal value. A bit is deemed fragile if it varies in value across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score-fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. This is the first and only work that we are aware of to use the coincidence of fragile bit locations to improve the accuracy of matches.","PeriodicalId":325900,"journal":{"name":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Using fragile bit coincidence to improve iris recognition\",\"authors\":\"K. Hollingsworth, K. W. Bowyer, P. Flynn\",\"doi\":\"10.1109/BTAS.2009.5339036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are of equal value. A bit is deemed fragile if it varies in value across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score-fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. This is the first and only work that we are aware of to use the coincidence of fragile bit locations to improve the accuracy of matches.\",\"PeriodicalId\":325900,\"journal\":{\"name\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2009.5339036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2009.5339036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using fragile bit coincidence to improve iris recognition
The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are of equal value. A bit is deemed fragile if it varies in value across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score-fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. This is the first and only work that we are aware of to use the coincidence of fragile bit locations to improve the accuracy of matches.