多目标对抗拦截的智能分配策略

Yang Yu, Yizhong Fang, Han Wu, Tuo Han, Q. Hu
{"title":"多目标对抗拦截的智能分配策略","authors":"Yang Yu, Yizhong Fang, Han Wu, Tuo Han, Q. Hu","doi":"10.1109/CAC57257.2022.10054926","DOIUrl":null,"url":null,"abstract":"The multi-missile confront multi-target is a classic target allocation issue in the combat scenario of multiple missiles intercepting multiple maneuvering targets. Traditional algorithms lack environmental assessment model, train quality, and indicator function in the adversarial environment. To this end, this paper aims to propose an intelligent assignment strategy which contains indicator function and evaluation model. Then, an indicator function and an evaluation model considering the miss distance, threat situation, and the number of specified interception targets are introduced into the reinforcement learning algorithm. The local and global reward functions are introduced to improve the training convergence and efficiency in the multi-missile multi-target confrontation scenario. Finally, simulation results are designed to check on advantage of intelligent allocation strategy.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Assignment Strategy for Multi-Target Adversarial Interception\",\"authors\":\"Yang Yu, Yizhong Fang, Han Wu, Tuo Han, Q. Hu\",\"doi\":\"10.1109/CAC57257.2022.10054926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-missile confront multi-target is a classic target allocation issue in the combat scenario of multiple missiles intercepting multiple maneuvering targets. Traditional algorithms lack environmental assessment model, train quality, and indicator function in the adversarial environment. To this end, this paper aims to propose an intelligent assignment strategy which contains indicator function and evaluation model. Then, an indicator function and an evaluation model considering the miss distance, threat situation, and the number of specified interception targets are introduced into the reinforcement learning algorithm. The local and global reward functions are introduced to improve the training convergence and efficiency in the multi-missile multi-target confrontation scenario. Finally, simulation results are designed to check on advantage of intelligent allocation strategy.\",\"PeriodicalId\":287137,\"journal\":{\"name\":\"2022 China Automation Congress (CAC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 China Automation Congress (CAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAC57257.2022.10054926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10054926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多弹对抗多目标是多弹拦截多机动目标作战场景中的典型目标分配问题。传统算法缺乏对抗环境下的环境评价模型、训练质量和指标功能。为此,本文提出了一种包含指标函数和评价模型的智能分配策略。然后,在强化学习算法中引入了考虑脱靶量、威胁情况和指定拦截目标数量的指标函数和评估模型;为了提高多导弹多目标对抗场景下训练的收敛性和效率,引入了局部和全局奖励函数。最后,设计了仿真结果,验证了智能分配策略的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Assignment Strategy for Multi-Target Adversarial Interception
The multi-missile confront multi-target is a classic target allocation issue in the combat scenario of multiple missiles intercepting multiple maneuvering targets. Traditional algorithms lack environmental assessment model, train quality, and indicator function in the adversarial environment. To this end, this paper aims to propose an intelligent assignment strategy which contains indicator function and evaluation model. Then, an indicator function and an evaluation model considering the miss distance, threat situation, and the number of specified interception targets are introduced into the reinforcement learning algorithm. The local and global reward functions are introduced to improve the training convergence and efficiency in the multi-missile multi-target confrontation scenario. Finally, simulation results are designed to check on advantage of intelligent allocation strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信