具有广义Caputo导数和脉冲效应的随机分数阶微分方程

A. Chauhan, G. R. Gautam, Jitendra Kumar, J. Dabas, Chauhan S P S
{"title":"具有广义Caputo导数和脉冲效应的随机分数阶微分方程","authors":"A. Chauhan, G. R. Gautam, Jitendra Kumar, J. Dabas, Chauhan S P S","doi":"10.26524/cm152","DOIUrl":null,"url":null,"abstract":"In this paper, impulsive stochastic fractional differential equations (ISFDEs) in Lp (p> 2) space are introduced. We present a general framework for finding solution for ISFDEs. Then, by using the Burkholder - Davis - Gundy inequality and Holder's inequality, we prove the existence and uniqueness of solution to ISFDE by fixed point theorem. We also investigate Lipschitz continuity of solutions with respect to initial values by using Gronwall inequality. Finally, we provide an application to illustrate the results we obtained. \n ","PeriodicalId":414198,"journal":{"name":"Journal of Computational Mathematica","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic fractional differential equations with generalized Caputo's derivative and impulsive effects\",\"authors\":\"A. Chauhan, G. R. Gautam, Jitendra Kumar, J. Dabas, Chauhan S P S\",\"doi\":\"10.26524/cm152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, impulsive stochastic fractional differential equations (ISFDEs) in Lp (p> 2) space are introduced. We present a general framework for finding solution for ISFDEs. Then, by using the Burkholder - Davis - Gundy inequality and Holder's inequality, we prove the existence and uniqueness of solution to ISFDE by fixed point theorem. We also investigate Lipschitz continuity of solutions with respect to initial values by using Gronwall inequality. Finally, we provide an application to illustrate the results we obtained. \\n \",\"PeriodicalId\":414198,\"journal\":{\"name\":\"Journal of Computational Mathematica\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26524/cm152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26524/cm152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了Lp (p> 2)空间中的脉冲随机分数阶微分方程。我们提出了一个寻找ISFDEs解的一般框架。然后,利用Burkholder - Davis - Gundy不等式和Holder不等式,用不动点定理证明了ISFDE解的存在唯一性。我们还利用Gronwall不等式研究了解关于初值的Lipschitz连续性。最后,我们提供了一个应用来说明我们得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic fractional differential equations with generalized Caputo's derivative and impulsive effects
In this paper, impulsive stochastic fractional differential equations (ISFDEs) in Lp (p> 2) space are introduced. We present a general framework for finding solution for ISFDEs. Then, by using the Burkholder - Davis - Gundy inequality and Holder's inequality, we prove the existence and uniqueness of solution to ISFDE by fixed point theorem. We also investigate Lipschitz continuity of solutions with respect to initial values by using Gronwall inequality. Finally, we provide an application to illustrate the results we obtained.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信