输入非线性块结构系统的鲁棒辨识

Shi-Du Dong, Yuzhu Zhang, Jiawei Liu, Xingxing Zhou, Xuesong Wang
{"title":"输入非线性块结构系统的鲁棒辨识","authors":"Shi-Du Dong, Yuzhu Zhang, Jiawei Liu, Xingxing Zhou, Xuesong Wang","doi":"10.1109/CAC57257.2022.10055932","DOIUrl":null,"url":null,"abstract":"A robust identification algorithm is presented for nonlinear systems with disturbance, which is fitted by Hammerstein block structure model. A hierarchical least squares method is proposed to estimate model parameters and track disturbance in combination with auxiliary modelling strategies and separable techniques. The multi-innovation technology for error updating is used to augment the dimension of the innovation matrix, in order to reduce the estimation error variance and enhance the convergence stability of the algorithm. The time-varying disturbance is still tracking by a single innovation strategy. Two adaptive forgetting factors are proposed to enhance the system parameters' convergence characteristics and to improve the track ability of time-varying disturbance. An example is applied to validate the benefits of the proposed algorithm. The established model can facilitate controller design and system operation monitoring.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust identification of input nonlinear block structure systems\",\"authors\":\"Shi-Du Dong, Yuzhu Zhang, Jiawei Liu, Xingxing Zhou, Xuesong Wang\",\"doi\":\"10.1109/CAC57257.2022.10055932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A robust identification algorithm is presented for nonlinear systems with disturbance, which is fitted by Hammerstein block structure model. A hierarchical least squares method is proposed to estimate model parameters and track disturbance in combination with auxiliary modelling strategies and separable techniques. The multi-innovation technology for error updating is used to augment the dimension of the innovation matrix, in order to reduce the estimation error variance and enhance the convergence stability of the algorithm. The time-varying disturbance is still tracking by a single innovation strategy. Two adaptive forgetting factors are proposed to enhance the system parameters' convergence characteristics and to improve the track ability of time-varying disturbance. An example is applied to validate the benefits of the proposed algorithm. The established model can facilitate controller design and system operation monitoring.\",\"PeriodicalId\":287137,\"journal\":{\"name\":\"2022 China Automation Congress (CAC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 China Automation Congress (CAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAC57257.2022.10055932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10055932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用Hammerstein块结构模型拟合具有扰动的非线性系统的鲁棒辨识算法。结合辅助建模策略和可分离技术,提出了一种层次最小二乘法来估计模型参数和跟踪扰动。采用多创新技术进行误差更新,增加创新矩阵的维数,以减小估计误差方差,提高算法的收敛稳定性。时变扰动仍然被单一的创新策略所跟踪。提出了两个自适应遗忘因子,增强了系统参数的收敛特性,提高了对时变扰动的跟踪能力。通过算例验证了该算法的有效性。所建立的模型便于控制器设计和系统运行监控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust identification of input nonlinear block structure systems
A robust identification algorithm is presented for nonlinear systems with disturbance, which is fitted by Hammerstein block structure model. A hierarchical least squares method is proposed to estimate model parameters and track disturbance in combination with auxiliary modelling strategies and separable techniques. The multi-innovation technology for error updating is used to augment the dimension of the innovation matrix, in order to reduce the estimation error variance and enhance the convergence stability of the algorithm. The time-varying disturbance is still tracking by a single innovation strategy. Two adaptive forgetting factors are proposed to enhance the system parameters' convergence characteristics and to improve the track ability of time-varying disturbance. An example is applied to validate the benefits of the proposed algorithm. The established model can facilitate controller design and system operation monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信