将核参数自动选择方法应用于全带宽RBF核函数,用于高光谱图像分类

Kai-Ching Chen, Cheng-Hsaun Li, Bor-Chen Kuo, Min-Shian Wang
{"title":"将核参数自动选择方法应用于全带宽RBF核函数,用于高光谱图像分类","authors":"Kai-Ching Chen, Cheng-Hsaun Li, Bor-Chen Kuo, Min-Shian Wang","doi":"10.1109/IGARSS.2014.6947222","DOIUrl":null,"url":null,"abstract":"The support vector machine (SVM) is widely used in hyperspectral image classification due to the robust to the Hughes phenomenon. However, the performance of SVM highly depends on the kernel parameter selection. Hence, it is hard to apply the SVM based on the kernel with lots of parameters such as the full bandwidth RBF (FRBF) kernel whose number of parameters is equal to the number of features. In our previous study, an automatic kernel parameter selection method (APS) was proposed for the normalized kernel function. The proper kernel parameters are the minimizer of the optimization problem based on the proposed kernel-based class separability measure. In this study, we apply the APS to find the best kernel parameters of the FRBF kernel. Experimental results on the Indian Pine Site dataset show that the SVM based on the FRBF kernel with proper kernel parameters outperforms than the SVM based on the RBF kernel on the small sample size problem.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applying automatic kernel parameter selection method to the full bandwidth RBF kernel function for hyperspectral image classification\",\"authors\":\"Kai-Ching Chen, Cheng-Hsaun Li, Bor-Chen Kuo, Min-Shian Wang\",\"doi\":\"10.1109/IGARSS.2014.6947222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The support vector machine (SVM) is widely used in hyperspectral image classification due to the robust to the Hughes phenomenon. However, the performance of SVM highly depends on the kernel parameter selection. Hence, it is hard to apply the SVM based on the kernel with lots of parameters such as the full bandwidth RBF (FRBF) kernel whose number of parameters is equal to the number of features. In our previous study, an automatic kernel parameter selection method (APS) was proposed for the normalized kernel function. The proper kernel parameters are the minimizer of the optimization problem based on the proposed kernel-based class separability measure. In this study, we apply the APS to find the best kernel parameters of the FRBF kernel. Experimental results on the Indian Pine Site dataset show that the SVM based on the FRBF kernel with proper kernel parameters outperforms than the SVM based on the RBF kernel on the small sample size problem.\",\"PeriodicalId\":385645,\"journal\":{\"name\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2014.6947222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6947222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

支持向量机因其对休斯现象的鲁棒性而被广泛应用于高光谱图像分类中。然而,支持向量机的性能在很大程度上取决于核参数的选择。因此,难以应用基于参数较多核的支持向量机,如参数个数等于特征个数的全带宽RBF (FRBF)核。在我们之前的研究中,提出了一种归一化核函数的自动核参数选择方法(APS)。适当的核参数是基于所提出的基于核的类可分性测度的优化问题的最小化器。在本研究中,我们使用APS来寻找FRBF核的最佳核参数。在印度松遗址数据集上的实验结果表明,在小样本问题上,基于核参数合适的FRBF核的支持向量机优于基于RBF核的支持向量机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying automatic kernel parameter selection method to the full bandwidth RBF kernel function for hyperspectral image classification
The support vector machine (SVM) is widely used in hyperspectral image classification due to the robust to the Hughes phenomenon. However, the performance of SVM highly depends on the kernel parameter selection. Hence, it is hard to apply the SVM based on the kernel with lots of parameters such as the full bandwidth RBF (FRBF) kernel whose number of parameters is equal to the number of features. In our previous study, an automatic kernel parameter selection method (APS) was proposed for the normalized kernel function. The proper kernel parameters are the minimizer of the optimization problem based on the proposed kernel-based class separability measure. In this study, we apply the APS to find the best kernel parameters of the FRBF kernel. Experimental results on the Indian Pine Site dataset show that the SVM based on the FRBF kernel with proper kernel parameters outperforms than the SVM based on the RBF kernel on the small sample size problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信