摄像头和成像雷达特征级传感器融合夜视行人识别

Matthias Serfling, O. Loehlein, R. Schweiger, K. Dietmayer
{"title":"摄像头和成像雷达特征级传感器融合夜视行人识别","authors":"Matthias Serfling, O. Loehlein, R. Schweiger, K. Dietmayer","doi":"10.1109/IVS.2009.5164345","DOIUrl":null,"url":null,"abstract":"This contribution presents a robust pedestrian detection system at night that fuses a camera sensor and a scanning radar sensor on feature level. Each sensor defines an overdetermined set of features to be selected and parameterized using the supervised training algorithm AdaBoost. This technique assures an optimal selection and weighting of the features from both sensors depending on their discriminative power for the classification task. In the radar plane a new complex signal filter has been derived which describes a local similarity measure of velocity differences. In order to achieve realtime capability multiple classifiers are combined using a cascade.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Camera and imaging radar feature level sensorfusion for night vision pedestrian recognition\",\"authors\":\"Matthias Serfling, O. Loehlein, R. Schweiger, K. Dietmayer\",\"doi\":\"10.1109/IVS.2009.5164345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution presents a robust pedestrian detection system at night that fuses a camera sensor and a scanning radar sensor on feature level. Each sensor defines an overdetermined set of features to be selected and parameterized using the supervised training algorithm AdaBoost. This technique assures an optimal selection and weighting of the features from both sensors depending on their discriminative power for the classification task. In the radar plane a new complex signal filter has been derived which describes a local similarity measure of velocity differences. In order to achieve realtime capability multiple classifiers are combined using a cascade.\",\"PeriodicalId\":396749,\"journal\":{\"name\":\"2009 IEEE Intelligent Vehicles Symposium\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2009.5164345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

这一贡献提出了一个强大的夜间行人检测系统,融合了相机传感器和扫描雷达传感器的特征级。每个传感器定义一组超确定的特征,使用AdaBoost监督训练算法进行选择和参数化。该技术确保根据两个传感器的分类任务的判别能力对特征进行最优选择和加权。在雷达平面上推导了一种新的复信号滤波器,它描述了速度差的局部相似度量。为了实现实时性,使用级联将多个分类器组合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Camera and imaging radar feature level sensorfusion for night vision pedestrian recognition
This contribution presents a robust pedestrian detection system at night that fuses a camera sensor and a scanning radar sensor on feature level. Each sensor defines an overdetermined set of features to be selected and parameterized using the supervised training algorithm AdaBoost. This technique assures an optimal selection and weighting of the features from both sensors depending on their discriminative power for the classification task. In the radar plane a new complex signal filter has been derived which describes a local similarity measure of velocity differences. In order to achieve realtime capability multiple classifiers are combined using a cascade.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信