内在检查点:一种通过二值修改减少仿真时间的方法

J. Ringenberg, Chris Pelosi, D. Oehmke, T. Mudge
{"title":"内在检查点:一种通过二值修改减少仿真时间的方法","authors":"J. Ringenberg, Chris Pelosi, D. Oehmke, T. Mudge","doi":"10.1109/ISPASS.2005.1430561","DOIUrl":null,"url":null,"abstract":"With the proliferation of benchmarks available today, benchmarking new designs can significantly impact overall development time. In order to fully test and represent a typical workload, a large number of benchmarks must be run, and while current techniques such as SimPoint and SMARTS have had considerable success reducing simulation time, there are still areas of improvement. This paper details a methodology that continues to decrease this simulation time by analyzing and augmenting benchmark binaries to contain intrinsic checkpoints that allow for the rapid execution of important portions of code thereby removing the need for explicit checkpointing support. In addition, these modified binaries have increased portability across multiple simulation environments and the ability to be run in a highly parallel fashion. Average speedups for SPEC2000 of roughly 60x are seen over a standard SimPoint interval of 100 million instructions corresponding to a reduction in simulation time from 3.13 hours down to 3 minutes","PeriodicalId":230669,"journal":{"name":"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Intrinsic Checkpointing: A Methodology for Decreasing Simulation Time Through Binary Modification\",\"authors\":\"J. Ringenberg, Chris Pelosi, D. Oehmke, T. Mudge\",\"doi\":\"10.1109/ISPASS.2005.1430561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of benchmarks available today, benchmarking new designs can significantly impact overall development time. In order to fully test and represent a typical workload, a large number of benchmarks must be run, and while current techniques such as SimPoint and SMARTS have had considerable success reducing simulation time, there are still areas of improvement. This paper details a methodology that continues to decrease this simulation time by analyzing and augmenting benchmark binaries to contain intrinsic checkpoints that allow for the rapid execution of important portions of code thereby removing the need for explicit checkpointing support. In addition, these modified binaries have increased portability across multiple simulation environments and the ability to be run in a highly parallel fashion. Average speedups for SPEC2000 of roughly 60x are seen over a standard SimPoint interval of 100 million instructions corresponding to a reduction in simulation time from 3.13 hours down to 3 minutes\",\"PeriodicalId\":230669,\"journal\":{\"name\":\"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2005.1430561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2005.1430561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

随着当今可用基准测试的激增,对新设计进行基准测试可以显著影响总体开发时间。为了全面测试和代表典型的工作负载,必须运行大量的基准测试,虽然SimPoint和SMARTS等当前技术在减少模拟时间方面取得了相当大的成功,但仍有改进的领域。本文详细介绍了一种方法,该方法通过分析和增加基准二进制文件来包含内在检查点,从而允许快速执行代码的重要部分,从而消除对显式检查点支持的需要,从而继续减少模拟时间。此外,这些修改后的二进制文件增加了跨多个模拟环境的可移植性,并能够以高度并行的方式运行。在1亿个指令的标准SimPoint间隔中,SPEC2000的平均速度大约为60倍,对应于将模拟时间从3.13小时减少到3分钟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrinsic Checkpointing: A Methodology for Decreasing Simulation Time Through Binary Modification
With the proliferation of benchmarks available today, benchmarking new designs can significantly impact overall development time. In order to fully test and represent a typical workload, a large number of benchmarks must be run, and while current techniques such as SimPoint and SMARTS have had considerable success reducing simulation time, there are still areas of improvement. This paper details a methodology that continues to decrease this simulation time by analyzing and augmenting benchmark binaries to contain intrinsic checkpoints that allow for the rapid execution of important portions of code thereby removing the need for explicit checkpointing support. In addition, these modified binaries have increased portability across multiple simulation environments and the ability to be run in a highly parallel fashion. Average speedups for SPEC2000 of roughly 60x are seen over a standard SimPoint interval of 100 million instructions corresponding to a reduction in simulation time from 3.13 hours down to 3 minutes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信